

Nanoscale thermal transport

Lecture 5

Riley Hanus

http://rileyhanus.com/science.html

- 1. Wavelength, coherence length, mean free path, and relaxation time
- 2. Example Callaway model
- 3. Explore how different scattering mechanisms influence thermal conductivity versus temperature
 - a. Point defects
 - b. Interfaces
- 4. Explore low and high temperature limits
 - a. Lattice softening
- 5. Mean free path accumulation

Relaxation time, τ (scalar): The time between scattering events of a phonon wave-packet.

Group velocity, v_g (vector): The speed and direction the wave-packet travels.

Mean free path, $\Lambda = \mathbf{v_g} \tau$ (vector): The distance a phonon wavepacket travels before scattering.

 Λ determines how closely defects must be space for them to significantly reduce thermal conductivity. For example, defects that are spaced significantly farther apart than the phonon wave-packets phonon-phonon scattering mean free path, will not significantly reduce the heat carried by the wave-packet.

Wavelength, λ (vector): The wavelength of the wavepacket.

 λ , influences how strongly the phonon wave-packet will interact with a defect of a given physical size. This is intuitive when one remembers the scattering rate involves the real space Fourier transform of scattering potential (Lecture 4).

coherence length

Coherence length (vector): The distance over which the atomic vibrations are correlated to one another.

Ideal plane waves have an infinite coherence length. These do not exist in nature. In reality, there is a distance beyond which the vibration of atoms are uncorrelated.

Callaway Modeling

We've derived each part of this model in previous lectures.The spectral version is listed here for reference.A similar procedure can be performed on a mode specific basis.

$$\kappa = \frac{1}{3} \int_{0}^{\omega_{\text{max}}} C(\omega) v_{\text{g}}(\omega)^2 \tau(\omega) \ d\omega$$

$$C(\omega) = \frac{3}{2\pi^2} \frac{\omega^4}{v_{\rm g} v_{\rm p}^2} \frac{\hbar^2}{k_{\rm B} T^2} \frac{e^{\hbar \omega/k_{\rm B} T}}{(e^{\hbar \omega/k_{\rm B} T} - 1)^2}$$

$$k_{\max} = \left(\frac{6\pi^2}{V}\right)^{1/3}$$

only acoustic modes
V: volume per primitive unit cell
all modes
V: volume per atom

9

Dispersion relation:

1) Debye

$$\omega = v_{\rm s} k \qquad \qquad \omega_{\rm max} = v_{\rm s} \, k_{\rm max}$$

$$v_{\rm g} = \frac{d\omega}{dk} = v_{\rm s}$$

$$v_{\rm s} = \left(\frac{1}{3v_{\rm L}^3} + \frac{2}{3v_{\rm T}^3}\right)^{-1/3}$$

 $v_{\rm p} = \frac{\omega}{k} = v_{\rm s}$

$$\omega = \omega_{\max} \sin\left(\frac{\pi}{2} \frac{k}{k_{\max}}\right) \qquad \omega_{\max} = \frac{2}{\pi} v_{s} k_{\max} \qquad v_{g} = \frac{d\omega}{dk} = v_{s} \cos\left(\frac{\pi}{2} \frac{k}{k_{\max}}\right) \qquad v_{p} = \frac{\omega}{k}$$
$$k = \frac{2}{\pi} k_{\max} \arcsin\left(\frac{\omega}{\omega_{\max}}\right)$$

Anderson, O. L. J. Phys. Chem. Solids 24, 909–917 (1963).

Materials values required to reproduce this model (roughly based on Si)

$$V = 4 \times 10^{-29} \text{ m}^{-3}$$

$$v_{s} = 6084 \text{ m/s}$$

$$\tau^{-1} = \tau_{pp}^{-1} + \tau_{pd}^{-1} + \tau_{b}^{-1}$$

 $\omega = v_{\rm s}k$

phonon-phonon scattering point defect scattering

boundary scattering

 $d = 0.1 \,\mu{\rm m}$

$$\tau_{\rm pp}^{-1} = \frac{\omega^2 T}{A v_{\rm s}^3} \exp\left(-\frac{B}{T}\right)$$

$$\tau_{\rm pd}^{-1} = \frac{V_{\rm atom}\omega^4}{4 \pi v_{\rm s}^3} f\left(1 - \frac{\Delta M}{M}\right)^2 \qquad \tau_{\rm b}^{-1} = \frac{v_{\rm s}}{d}$$

$$A = 0.135 \frac{\text{m}^3}{\text{Ks}^2}$$
$$B = 220 \text{ K}$$

$$M_{1} = 28.09 \times 10^{-3} \text{ kg/mol}$$

$$M_{2} = 30.97 \times 10^{-3} \text{ kg/mol}$$

$$\Delta M = M_{2} - M_{1}$$

$$M = fM_{1} + (1 - f)M_{2}$$

$$f = 0.005$$

$$V_{\text{atom}} = \frac{V}{2}$$

Tan, G. et al. ACS Energy Lett. **3**, 705–712 (2018). Hanus, R., Garg, A. & Snyder, G. J. Commun. Phys. 1, 78 (2018).

Low-T gives information about microstructural scattering
 High-T, κ ∝ T⁻¹ behavior stems from phonon-phonon scattering

Increased point defect scattering $f = 0.005 \rightarrow 0.015$

Increased microstructural scattering $d = 100 \text{ nm} \rightarrow 10 \text{ nm}$

Comparing the previous two models

increased point defect scattering vs. increased microstructural scattering

Callaway (spectral) model:

$$\kappa = \frac{1}{3} \int_{0}^{\omega_{\text{max}}} C(\omega) v_{\text{g}}(\omega)^2 \tau(\omega) \ d\omega$$

Debye-Callaway model:

$$\kappa_{\rm L} = k_{\rm B} \frac{(k_{\rm B} T)^3}{2\pi^2 v_{\rm S} \hbar^3} \int_0^{\theta_{\rm D}/T} \tau(x) \frac{x^4 e^x}{(e^x - 1)^2} dx \qquad \qquad x = \frac{\hbar\omega}{k_{\rm B} T}$$

on board

Low-temperature limit

Hanus, R., Garg, A. & Snyder, G. J. Phonon diffraction and dimensionality crossover in phonon-interface scattering. *Commun. Phys.* **1**, 78 (2018).

on board

Low-temperature limit

$$\kappa_{\rm L} = k_{\rm B} \frac{(k_{\rm B} T)^3}{2\pi^2 v_{\rm S} \hbar^3} \int_0^{\theta_{\rm D}/T} \tau(x) \frac{x^4 e^x}{(e^x - 1)^2} dx$$

Hanus, R., Garg, A. & Snyder, G. J. Phonon diffraction and dimensionality crossover in phonon-interface scattering. *Commun. Phys.* **1**, 78 (2018).

17

High-temperature limit

Assert the following form of phonon-phonon scattering, and Debye dispersion

$$\tau_{\rm pp} = \left(\frac{6\pi^2}{V}\right)^{1/3} \frac{\overline{M} v_{\rm s}^3}{2k_{\rm B}\gamma^2 \omega^2 T}$$

Refs: Slack, G. A. & Galginaitis, S. *Phys. Rev.* **133**, (1964). Toberer, E. S., et al. *J. Mater. Chem.* **21**, 15843 (2011).

Make high temperature approximation ($T > \Theta_D$) for $C(\omega)$

 $C(\omega) \approx \frac{3 k_{\rm B} \omega^2}{2 \pi^2 v_{\rm s}^3}$

Hanus, R. *et al.* Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. *Adv. Mater.* **1900108**, 1900108 (2019). 18

Phonon scattering vs. Elastic (lattice) softening

When is softening expected to be important?

- 1. Anharmonic materials
- 2. High temperatures

Accumulation plots

$$\kappa = \frac{1}{3} \sum_{s} \int_{0}^{\omega_{\text{max}}} C(\omega) v_{\text{g}}(\omega) \Lambda(\omega) d\omega$$

If I know $\Lambda(\omega)$, then I can rewrite the integral over ω to one over Λ . Note, $\Lambda(\omega)$ usually decreases with increasing ω . So we label $\Lambda(\omega_{\text{max}}) = \Lambda_{\text{min}}$ and $\Lambda(0) = \Lambda_{\text{max}}$.

$$\kappa = \frac{1}{3} \sum_{s} \int_{\Lambda_{\text{max}}}^{\Lambda_{\text{min}}} C v_{\text{g}} \Lambda \left(\frac{d\Lambda}{d\omega}\right)^{-1} d\Lambda$$

Flip the limits, which spits out a negative sign, and package up the integrand into K_Λ

$$\kappa = \int_{\Lambda_{\min}}^{\Lambda_{\max}} K_{\Lambda} \ d\Lambda \qquad \qquad K_{\Lambda} = -\frac{1}{3} \sum_{s} C \ v_{g} \Lambda \left(\frac{d\Lambda}{d\omega}\right)^{-1}$$

Now define the "Normalized accumulation function"

$$\alpha(\Lambda_{\alpha}) = \frac{1}{\kappa} \int_{\Lambda_{\min}}^{\Lambda_{\alpha}} K_{\Lambda} \, d\Lambda \qquad \text{plot from } \Lambda_{\alpha} = \Lambda_{\min} \text{ to } \Lambda_{\max}$$

Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and 21 nanostructures. *Phys. Rev. B - Condens. Matter Mater. Phys.* **87**, 1–12 (2013).

Accumulation plots

Example

75% of the heat is carried by phonons with a mean free path less than 1000 nm in Si, and less than 5 nm in PbTe

Liu, Z., Mao, J., Liu, T.-H., Chen, G. & Ren, Z. MRS Bull. 43, 181–186 (2018).