Nanoscale thermal
transport

Lecture 2

Riley Hanus
http://rileyhanus.com/science.html



http://rileyhanus.com/science.html

1. Define (and understand) the phonon band structures
2. Learn how to read a phonon band structure
3. Introduction to the phonon gas model

4. Derive the phonon density of states two ways



Phonon band structures

Most solid-state physics classes will derive an analytical dispersion for a 1D chain.
* |If you haven’t seen this, read Kittel, Intro. to Solid State physics Chapter 4.
* Much of the intuition gained from the 1D case extends to 3D

The math for a 3D crystal, which is used to calculate real dispersion relations is given in:
* Wallace, Thermodynamics of Crystals, Chapter 3.10.
* Hanus, Thesis, Section 2.2.1 and Appendix B.

Here we will outline the procedure for computing phonon
properties:
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Phonon band structures | Set up

Simply solve the equations of motion (Newton’s law)

a, f: atom label
[, j: direction

= —Px §
F =ma , O =2
= J=x
w\\‘\?_b
a=1
I =x

Databases for interatomic force constants (IFCs) &

—dx = ma

1 T

—z Cij.ﬁ ujﬁ = m*iif
jB

We know CDg.ﬂ and m?%,

solve for uf".

ap,
ij

* Phonopy: http://phonondb.mtl.kyoto-u.ac.jp/

* almaBTE: http://www.almabte.eu/index.php/database/
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Required math

Expressing a function as a Fourier Series:

co

FO)= ) cyeis

N=—00

Matrix diagonalization:

o 1 =2

Dij =10 1 0
1 -1 3

\ Diagonalize

_ 2
Ae; = Z Dije; (A = w* for phonons)
J

Find A’s and €; ‘s that obey this equation
(There are 3 combinations in this case since D;; is 3 x 3)

1
/1=2andei=[0]work
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Phonon band structures | (attice Dynamics

1. Express u{x as a Fourier Series (the Fourier coefficients “cy” are a bit more complicated here)

1 (kR —
uy = Z Akeﬁkel(k Ra—wt),
k

/Mg

2. Solve equation of motion (—®x = ma)
— Z bejﬁ ujﬁ = m*if
JB

2a. Insolving we find its convenient to define the Dynamical Matrix

o’
(I)C_){B (k) _ vj eik-RB’
" Mo

2b. Phonon ’eigenstates’ are the solutions you get when you
diagonalize the Dynamical Matrix

WP (ks)ed(ks) = @ (ke (ks).
B



N = # of atoms in unit cell s=1,..,3N

WP (ks)ed(ks) = @ (k) (ks).
7B
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Lattice dynamics quiz

Define interatomic force constants (IFCs).

How many IFCs are there?
Define the Dynamical Matrix.
What is its dimensions?
Define an eigenstate.

How many eigenstates are there at a
given k-point?

Define an eigenvector.
What is its dimensions?

Define an eigenvalue

10. What is its ‘dimensions’?

d)

f)

g)

h)

j)

N: number of atoms in the unit cell

3N x 3N

The frequency squared of the
eigenstate

A vector denoting the atomic
displacements in each cartesian
direction of each atom in the unit cell
(mode shape)

An eigenvalue/eigenvector set which
diagonalizes the dynamical matrix

A matrix governing the dynamic
(vibrational) properties of crystals
Ideally, you would have an infinite
number.

The spring constants between all
atoms in the crystal

3N

It’s a vector of length 3N (3N x 1)

It’s a scalar (so 1 x 17?)

key: 1g, 2f, 3e, 4a, 5d, 6g, 7c, 8i, 9b, 10j



Phonon band structures | In practice

Find solutions (diagonalize the Dynamical Matrix)

W (ks)e (ks) = Y B (k)€ (ks).
JB

Along special directions to plot On a mesh to sample the entire
pretty band structures: Brillouin Zone, when we want
transport properties of density of
: states: b*
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Computational suites that do this:

phonopy: https://atztogo.github.io/phonopy/
almaBTE: http://www.almabte.eu/
shengBTE: http://www.shengbte.org/ 9
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Reading a phonon band structure

3 acoustic modes (w — 0 at )

10

GaAs

3n — 3 optical modes (w # 0 atI)

n is the number of atoms in the unit cell
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Effect of atomic mass and the

Reading a phonon band structure
phonon band gap.

Cubic GaN: N mass = 14 amu Cubic GaAs: As mass = 75 amu
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Density of states

Units for vertical (energy) axis:

* some use ‘angular’ frequency w = 27 f [rad THz] (they won’t show the rad though)
* some use ‘ordinal’ frequency f [THz]
 some use frequency in [cm™1]

(f) (f) (w) (E)

* some use energy £ = hw [meV]
200cm™! =~ 6 THz ~ 40 THz ~ 25;meV
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magnitude of atomic displacement
dramatically exaggerated
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Reading a phonon band structure

10

GaAs

35 F
30 F
. 2!

w (meV)
b

Phonon-gas model
for heat flux:

flux = energy density X velocity X number =

. 1 .
ji = VZ ha(ks) v} n(ks)
ks

Energy

Area X time

Group velocity and phase velocity

Adding several waves of different wavelength
together will produce an interference
pattern which begins to localize the wave.

|
| A

MU

- Ay —m

But that process spreads the wave number k
values and makes it more uncertain. This

is an inherent and inescapable increase
inthe uncenaimyAk when AX is

decreased. AI\A\ ~ 1
—

Vg
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Wave packets

https://www.youtube.com/watc

h?v=tIM9vqg-bepA

https://demonstrations.wolfram
.com/WavepacketForAFreeParti
cle

Group and phase velocity

f,(x) = 1 o

cos(m1t—k1x)
05

09 = 0
cos(® 0t-kox)
-05-

[ ]

Green dot @
Phase Velocity

0,
Magenta dot @
Group Velocity i

g = I I I ol 1
?3 -2 -1 0 1 2

> » ) 038/120

average momentum, <p> { r 0.64
momentum uncertainty, Ap < - 01

time 0.

SREOEE
function -Im\P{x,t) P(it) five partial waves
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The phonon gas model

Lines are all: 10% :

* DFT obtained interatomic force constants (CD‘-X-B

ij

and Cbzﬁy)

*  Phonon properties from lattice dynamics

* Thermal conductivity from the phonon gas
model

*  First principles simulation, no adjustable

parameters... but there are choices

Diamond

SiC

K = Z C(ks) vé(ks) vé{ (ks)t(Kks)
SMR =My WP

Thermal Conductiviy (W/m-K)

0 100 200 300 400 500
Temperature (K)

R =

McGaughey, A. J. H., Jain, A. & Kim, H. Phonon properties and thermal conductivity from first
principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019). 17
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The phonon gas model

Mode specific treatment: Kk = Z C (ks) vi(Ks) vé (ks)T(ks)
(computational approach) ks

[0.0)

Spectral treatment: = lj C (@) vg(@)? T(w) dw

: 3
(Callaway modeling) 0

Where we define:
The spectral model can be thought

C(w) = Z C(ks)é(w — w(ks)) as containing the mode specific

properties “under the hood”.
st g(ks) 6(w — w(ks))

vg(e) = 2ks 0 (w — w(ks)) Often, in real (defective) materials,
() = Qs T(Ks) 6 (w — w(ks)) we don’t have access to full mode
ner= ks 0 (w — w(ks)) specific properties, and therefore

use the spectral treatement.



The phonon gas model

Harmonic - 2nd Order

Anharmonic - 3rd order

|
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Density of states How many states are at given energy?

Cubic GaN
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Wave Vector Density of states, g(w)

where group velocity goes to zero at the BZ edge = “Van Hove singularity” = peak in density of states



Density of states | Probably the most common derivation.

We will just examine one branch.

N: number of states

V: crystal volume 2n)°® 4 |
k: magnitude of the k-vector N(w)——=3mk
(2m)3 /V: volume of k-space

N(w)

n(w) = — number of states per volume
g(w) = dzgj)): a definition of the phonon density of states

assert a Debye model for phonon dispersion relation (band structure): w = vgk

3 dn(w) 1 w?

1 w
n(w) = w? g(w) = do 272 13 Notice:
S S This derivation does not

predict Van Hove singularities




Density of states Another derivation which is a more informative and will introduce

us to some math which is important in scattering theory

Required math:

Converting sums to integrals: Integrating over delta functions:

Nikz f(k) - (ZZ)B f f j f(K)dk,dk,dk, j f(x) 8(x — x) dx = f(x)
k

1 |4
720 Gy | raoek

Ni: number of k-vectors considered in the sum

fx)
X
6(x — xp)

V:is the volume of the unit cell X x N %q
The sum introduces no units. |
The integral comes with d3k, which has a =2 0
value of (2)3/V after integrating over the =
FBZ. = i
x x(l,
Instructive exercise: Note the units:
Pretend f (k) = 1 and compute both. if x (and therefore dx) has units of [m]

Hint: fd3k = (2n)3/V then §(x) has units of[ ] 22

1
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Densitv of states | A second definition of W) = 25 w — w(ks
Y the density of states: g(@) = V Ny ( (es))

700 \ n 700 | N N 13{ ' by
] T | T - fi?:-ll;()*: . L ‘
600 :/-/<k ;>x;> 600 D . \ u \\ U
_ . %)
- / © K w
z ~: b,
S 400 - . S 00}
g g
gii!ln L \/ \/-\_/\//_ %_ 300 - ) DOS
= — — - (1) pick a
200 | %\ : /: : : >_ a00 |- S frequency/energy
ol | wl/" large DOS (2) search through the
whole FBZ and count
_ _ / i _ 0 all modes at that
I X W K I L U W L Ku X 0
Wave Vector Density of states energy
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on board

Density of states

g(w) = — Z(S(w w(Ks))

VN,

For comparison we will only look at one branch, so only s = 1.
Therefore, we don’t need the sum over s.

9(w) = kaz 5 — 0(K))

Convert sum to an integral

1 VvV
g(w) = AE j §(w — w(k))d3k

Cancel V, and switch to spherical coordinates.

0 T 2TT

1
g(w) = VK ﬂj §(w — w(k)) sin 6 k? dpdodk

— 00




on board

Density of states | Kmaxmom
9(@) = 3 j j J §(w — w(k))sin 6 k? dpddk
000

Now we make the isotropic assumption, by saying that w(K) no longer depends on
the direction K is pointing, but only on its magnitude w (k).

After this, we can take the integrals over 8 and ¢: [[ sin6 d¢ dO = 4n

kmax

4
g(a))z(zg)g j 5(w — w(k)) k2dk

0

Need to convert the integral such that its over w so we can take advantage of that
6-function. We use our definitions of group and phase velocity to do this.

_ do v, = 2 1 P w* dw
Ve T dk Pk g(a))=2—ﬂ2 j S(w_w(k))v_gv_g
0
1 w?
Finally, we take the integral. g(w) =—

2.2
21T Vp Vg



Density of states

w (meV)

For a linear dispersion vy = v, = v

1 w?
g(a)) = 2——3 (same as first derivation)
Vs

(GaAs

1 w2 on board

g(w) =

2.2
2T Vp Vg

Currently we are only looking at
only one branch. Sometimes we
approximate all three acoustic
branches as one branch with
average group and phase velocities.

3 w?

2 .2
21T Vp Vg

g(w) =

keep in mind v and v,
can change with w

3 w?

g(w) = 212 vp ()2 Vg (w)

When vg(w) = 0, g(w) = oo
and that is our
Van Hove singularity
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