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1. Define (and understand) the phonon band structures

2. Learn how to read a phonon band structure

3. Introduction to the phonon gas model

4. Derive the phonon density of states two ways
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Phonon band structures

Most solid-state physics classes will derive an analytical dispersion for a 1D chain.
• If you haven’t seen this, read Kittel, Intro. to Solid State physics Chapter 4.
• Much of the intuition gained from the 1D case extends to 3D

The math for a 3D crystal, which is used to calculate real dispersion relations is given in:
• Wallace, Thermodynamics of Crystals, Chapter 3.10.
• Hanus, Thesis, Section 2.2.1 and Appendix B.

Here we will outline the procedure for computing phonon 
properties:

• frequencies

• eigenvectors 
(mode shape)
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Phonon band structures

𝐹 = −Φ𝑥
𝐹 = 𝑚𝑎

Simply solve the equations of motion (Newton’s law)

−"
!"

Φ#!
$" 𝑢!

" = 𝑚$�̈�#$

−Φ𝑥 = 𝑚𝑎𝛼, 𝛽: atom label
𝑖, 𝑗: direction

𝛼 = 1
𝑖 = 𝑥

𝛽 = 2
𝑗 = 𝑥

We know Φ#!
$" and 𝑚$ ,

solve for 𝑢#$.  

Databases for interatomic force constants (IFCs) Φ#!
$":

• Phonopy: http://phonondb.mtl.kyoto-u.ac.jp/
• almaBTE: http://www.almabte.eu/index.php/database/

Set up
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𝑓 𝑥 = "
%&'(

(

𝑐%𝑒#%)

Expressing a function as a Fourier Series:

Required math

Type equation here.

𝐷#! =
0 1 −2
0 1 0
1 −1 3

𝜆𝜖# ="
!

𝐷#!𝜖!

𝜆 = 2 and 𝜖! =
1
0
−1

work

2
1
0
−1

=
0 1 −2
0 1 0
1 −1 3

1
0
−1

2
0
−2

=
0 + 0 + 2
0 + 0 + 0
1 + 0 − 3

=
2
0
−2

as do

𝜆 = 1,1 and      𝜖! =
1
1
0
,
0
2
1

Diagonalize

Matrix diagonalization:

Find 𝜆‘s and 𝜖! ‘s that obey this equation
(There are 3 combinations in this case since 𝐷!" is 3 x 3)

(𝜆 = 𝜔* for phonons)
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Phonon band structures

1.   Express 𝑢#$ as a Fourier Series (the Fourier coefficients “𝑐#” are a bit more complicated here) 

2.   Solve equation of motion (−Φ𝑥 = 𝑚𝑎)

−"
!"

Φ#!
$" 𝑢!

" = 𝑚$�̈�#$

2a.   In solving we find its convenient to define the Dynamical Matrix

2b.   Phonon ’eigenstates’ are the solutions you get when you        
diagonalize the Dynamical Matrix

Lattice Dynamics

6



scalar 3𝑁 length vector 3𝑁 x 3𝑁 matrix 3𝑁 length vector

3𝑁 distinct         𝜔* and           𝜖#$ solutions

𝑁 = # of atoms in unit cell 𝑠 = 1,… , 3𝑁
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Lattice dynamics quiz

1. Define interatomic force constants (IFCs).

2. How many IFCs are there?

3. Define the Dynamical Matrix.

4. What is its dimensions?

5. Define an eigenstate.

6. How many eigenstates are there at a 
given k-point?

7. Define an eigenvector.

8. What is its dimensions?

9. Define an eigenvalue

10. What is its ‘dimensions’?

N: number of atoms in the unit cell

a) 3N x 3N
b) The frequency squared of the 

eigenstate
c) A vector denoting the atomic 

displacements in each cartesian 
direction of each atom in the unit cell 
(mode shape)

d) An eigenvalue/eigenvector set which 
diagonalizes the dynamical matrix

e) A matrix governing the dynamic 
(vibrational) properties of crystals

f) Ideally, you would have an infinite 
number. 

g) The spring constants between all 
atoms in the crystal

h) 3N
i) It’s a vector of length 3N (3N x 1)
j) It’s a scalar (so 1 x 1?) 

key: 1g, 2f, 3e, 4a, 5d, 6g, 7c, 8i, 9b, 10j 8



Phonon band structures In practice
Find solutions (diagonalize the Dynamical Matrix)

Along special directions to plot
pretty band structures:

On a mesh to sample the entire 
Brillouin Zone, when we want 
transport properties of density of 
states:

Computational suites that do this:
phonopy: https://atztogo.github.io/phonopy/
almaBTE: http://www.almabte.eu/
shengBTE: http://www.shengbte.org/ 9
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Reading a phonon band structure 3 acoustic modes (𝜔 → 0 at Γ)
3𝑛 − 3 optical modes (𝜔 ≠ 0 at Γ)
𝑛 is the number of atoms in the unit cell

Ultrasound, speed of sound,
Elastic tensor and moduli, 
Bulk modulus, Young’s modulus,
etc.
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Reading a phonon band structure Effect of atomic mass and the 
phonon band gap.

Cubic GaN:  N mass =  14 amu Cubic GaAs: As mass = 75 amu

25 meV

25 meV

𝑓 𝑓 (𝜔) (𝐸)
200 cm'+ ≈ 6 THz ≈ 40 THz ≈ 25 meV

Units for vertical (energy) axis:

• some use  ‘angular’ frequency 𝜔 = 2𝜋 𝑓 rad THz (they won’t show the rad though)
• some use ‘ordinal’ frequency 𝑓 [THz]
• some use frequency in [cm'+]
• some use energy 𝐸 = ℏ𝜔 [meV]
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Ga: Brown
N: Blue

magnitude of atomic displacement 
dramatically exaggerated

https://henriquemiranda.github.io/phononwe
bsite/phonon.html
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magnitude of atomic displacement 
dramatically exaggerated
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magnitude of atomic displacement 
dramatically exaggerated
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Reading a phonon band structure Group velocity and phase velocity

𝐯, =
𝑑𝜔
𝑑𝐤

𝐯,
𝐯- =

𝜔
𝐤

𝐯-

𝐯-

𝑗# =
1
𝑉"

𝐤/

ℏ𝜔(𝐤𝑠) 𝑣,# 𝑛(𝐤𝑠)
Phonon-gas model 
for heat flux:

!lux = energy density × velocity × number =
Energy

Area × time
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Wave packets Group and phase velocity

https://www.youtube.com/watc
h?v=tlM9vq-bepA

https://demonstrations.wolfram
.com/WavepacketForAFreeParti
cle/
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The phonon gas model
Lines are all: 

• DFT obtained interatomic force constants (Φ!"
#$

and Φ!"%
#$&)

• Phonon properties from lattice dynamics
• Thermal conductivity from the phonon gas 

model
• First principles simulation, no adjustable 

parameters… but there are choices

McGaughey, A. J. H., Jain, A. & Kim, H. Phonon properties and thermal conductivity from first 
principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019).

𝜅!" =/
𝐤%

𝐶 𝐤𝑠 𝑣&! 𝐤𝑠 𝑣&
" 𝐤𝑠 𝜏(𝐤𝑠)

=
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𝜅!" =/
𝐤%

𝐶 𝐤𝑠 𝑣&! 𝐤𝑠 𝑣&
" 𝐤𝑠 𝜏(𝐤𝑠)

The phonon gas model

Mode specific treatment:
(computational approach)

Spectral treatment:
(Callaway modeling)

𝜅 =
1
37
'

(

𝐶 𝜔 𝑣& 𝜔 ) 𝜏(𝜔) 𝑑𝜔

Where	we	define:

𝐶 𝜔 = /
𝐤/

𝐶 𝐤𝑠 𝛿(𝜔 − 𝜔(𝐤𝑠))

𝑣, 𝜔 =
∑𝐤/ 𝑣, 𝐤𝑠 𝛿(𝜔 − 𝜔(𝐤𝑠))

∑𝐤/ 𝛿(𝜔 − 𝜔(𝐤𝑠))

𝜏 𝜔 =
∑𝐤/ 𝜏(𝐤𝑠) 𝛿(𝜔 − 𝜔(𝐤𝑠))
∑𝐤/ 𝛿(𝜔 − 𝜔(𝐤𝑠))

The spectral model can be thought 
as containing the mode specific 
properties “under the hood”.

Often, in real (defective) materials, 
we don’t have access to full mode 
specific properties, and therefore 
use the spectral treatement.
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The phonon gas model
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Density of states

Cubic GaN

How many states are at given energy?

where group velocity goes to zero at the BZ edge = “Van Hove singularity” = peak in density of states

𝑔(𝜔) ∝ 𝜔*

, 𝑔(𝜔)

When branches are linear
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Density of states Probably the most common derivation.

𝑁(𝜔)
2𝜋 0

𝑉 =
4
3𝜋 𝑘

0

𝑁:  number of states
𝑉:  crystal volume
𝑘:   magnitude of the k-vector
2𝜋 0/𝑉: volume of k-space

𝑛(𝜔) = %(2)
4

: number of states per volume

𝑔 𝜔 = 56(2)
52

:  a definition of the phonon density of states

assert a Debye model for phonon dispersion relation (band structure):  𝜔 = 𝑣/𝑘

𝑛(𝜔) =
1
6𝜋*

𝜔0

𝑣/0
𝑔 𝜔 =

𝑑𝑛(𝜔)
𝑑𝜔 =

1
2𝜋*

𝜔*

𝑣/0

We will just examine one branch.

Notice:
This derivation does not 
predict Van Hove singularities
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Density of states Another derivation which is a more informative and will introduce 
us to some math which is important in scattering theory

G𝑓 𝑥 𝛿 𝑥 − 𝑥7 𝑑𝑥 = 𝑓(𝑥7)

Note the units: 
if 𝑥 (and therefore 𝑑𝑥) has units of [m]
then 𝛿(𝑥) has units of .

/

Integrating over delta functions:Converting sums to integrals:
1
𝑁𝐤
/
𝐤

𝑓 𝐤 →
𝑉
2𝜋 0K𝑓 𝐤 𝑑𝑘)𝑑𝑘8𝑑𝑘9

The sum introduces no units.
The integral comes with 𝑑0𝐤, which has a 
value of 2𝜋 0/𝑉 after integrating over the 
FBZ.

Instructive exercise:
Pretend 𝑓 𝐤 = 1 and compute both. 
Hint: ∫𝑑0𝐤 = 2𝜋 0/𝑉

1
𝑁𝐤
/
𝐤

𝑓 𝐤 →
𝑉
2𝜋 0G𝑓 𝐤 𝑑0𝐤

Required math:

𝑥

𝛿(
𝑥
−
𝑥 !
)

𝑥!𝑥 𝑥!

𝑓(
𝑥)

×

=

𝑥 𝑥!

𝑓
𝑥
𝛿(
𝑥
−
𝑥 !
)

𝑁𝐤: number of k-vectors considered in the sum
𝑉: is the volume of the unit cell

22



Density of states 𝑔 𝜔 =
1
𝑉𝑁𝐤

/
𝐤/

𝛿(𝜔 − 𝜔(𝐤𝑠))A second definition of 
the density of states:

(1) pick a 
frequency/energy

(2) search through the 
whole FBZ and count 
all modes at that 
energy

large DOS

small DOS
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Density of states 𝑔 𝜔 =
1
𝑉𝑁𝐤

/
𝐤/

𝛿(𝜔 − 𝜔(𝐤𝑠))

For comparison we will only look at one branch, so only 𝑠 = 1.
Therefore, we don’t need the sum over 𝑠.

𝑔 𝜔 =
1
𝑉𝑁𝐤

/
𝐤

𝛿(𝜔 − 𝜔(𝐤))

Convert sum to an integral

𝑔 𝜔 =
1
𝑉

𝑉
2𝜋 0G𝛿 𝜔 − 𝜔 𝐤 𝑑0𝐤

Cancel 𝑉, and switch to spherical coordinates.

𝑔 𝜔 =
1
2𝜋 0 K

'( 7 7

( : *:

𝛿 𝜔 − 𝜔 𝐤 sin 𝜃 𝑘* 𝑑𝜙𝑑𝜃𝑑𝑘

on board
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Density of states
𝑔 𝜔 =

1
2𝜋 0 K

7 7 7

𝐤'() : *:

𝛿 𝜔 − 𝜔 𝐤 sin 𝜃 𝑘* 𝑑𝜙𝑑𝜃𝑑𝑘

Now we make the isotropic assumption, by saying that 𝜔(𝐤) no longer depends on 
the direction 𝐤 is pointing, but only on its magnitude 𝜔(𝑘).

After this, we can take the integrals over 𝜃 and 𝜙: ∬sin 𝜃 𝑑𝜙 𝑑𝜃 = 4𝜋

𝑔 𝜔 =
4𝜋
2𝜋 0 G

7

;'()

𝛿(𝜔 − 𝜔(𝑘)) 𝑘*𝑑𝑘

Need to convert the integral such that its over 𝜔 so we can take advantage of that 
𝛿-function. We use our definitions of group and phase velocity to do this.

𝑔 𝜔 =
1
2𝜋* G

7

2'()

𝛿(𝜔 − 𝜔(𝑘))
𝜔*

𝑣-*
𝑑𝜔
𝑣,

𝑣- =
𝜔
𝑘𝑣, =

𝑑𝜔
𝑑𝑘

𝑔 𝜔 =
1
2𝜋*

𝜔*

𝑣-*𝑣,
Finally, we take the integral.

on board
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𝑔 𝜔 =
1
2𝜋*

𝜔*

𝑣-*𝑣,
Density of states

𝐯, =
𝑑𝜔
𝑑𝐤

𝐯- =
𝜔
𝐤

For a linear dispersion 𝑣, = 𝑣- = 𝑣<

𝑔 𝜔 =
1
2𝜋*

𝜔*

𝑣<0

keep in mind 𝑣, and 𝑣-
can change with 𝜔

𝑔 𝜔 =
3
2𝜋*

𝜔*

𝑣- 𝜔 *𝑣,(𝜔)

When 𝑣, 𝜔 = 0, 𝑔 𝜔 = ∞
and that is our
Van Hove singularity 

(same as first derivation)

Currently we are only looking at
only one branch. Sometimes we 
approximate all three acoustic 
branches as one branch with 
average group and phase velocities.

𝑔 𝜔 ≅
3
2𝜋*

𝜔*

𝑣-*𝑣,

on board
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