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Abstract

The flow of heat through solids is a topic of technological importance for microelectronics and en-
ergy materials such as thermoelectrics. In simple, defect-free crystals the thermal conductivity is
generally well understood. However, in materials containing defects and/or in those with very com-
plex crystal structures there is a lack of basic understanding which inhibits technological progress.
In this thesis, a combined experimental, theoretical, and computational approach is used to estab-
lish a basic understanding of thermal transport in defective and complex crystals. Particular focus
is given to the influence of interfaces, dislocations, and point defects and the transition between
crystalline-like and amorphous-like heat conduction. Additionally, a more targeted materials design
approach is applied to thermoelectric skutterudite material systems where thermal and electronic
properties are optimized by the controlled use of defects.
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Notation conventions

The notation convention used in this thesis is summarized as follows. Deviations from this conven-
tion will be noted.

Vectors and tensors are denoted with italic sub/superscripts, where i, j, k = 1, 2, 3 (the three Carte-
sian directions x, y, and z) unless otherwise noted. Subscripts that are roman font are simply for
labeling. For example, κij denotes the 3x3 thermal conductivity tensor, and κijph denotes the 3x3
phonon-gas channel thermal conductivity tensor. It is common to drop the tensor subscripts, in
particular when treating a cubic crystal since each diagonal component is equal to the scalar κph

and off diagonal components are zero. Additionally, vig and vip denote the group and phase velocity
vectors of a phonon. Similarly, dropping the vector superscript will imply that we are referring to
the magnitude of the vector.

Vectors may also be denoted by bold font. This specifically applies to the position vector, r, and
wavevector, k. The non-bold version of these variable stands for the magnitude of the vector. For
example, k stands for the magnitude of k. An integral over r denotes an integral over the three
dimensions of r,

∞̂

−∞

d3r =

∞̂

−∞

∞̂

−∞

∞̂

−∞

dx dy dz . (1)

Likewise for integrals over k.

Phonon calculations often involve the sum of over all phonon modes in the system, each of which
has a distinct wavevector k and branch index s. This will often be expressed by the shorthand ks,
such that C(ks) denotes the heat capacity of a phonon at k in branch s.

This thesis will consider theoretical treatments which are ‘mode specific’ and ‘spectral’. Mode
specific means that the phonon properties at of each mode ks are considered. A spectral treatment
means that phonon properties are expressed function of frequency ω. The mode specific phonon
properties are therefore contained ‘under the hood’ of a spectral model. We designate the mode
specific and spectral phonon properties by the variables argument. For example, the mode specific
and spectral heat capacity, C(ks) and C(ω) respectively, have different definitions. Specifically,
C(ω) contains the phonon density of states and C(ks) does not.

Einstein summation convention will be used, where repeated indices within a term are summed. A
tensor denoted by aij , multiplied into a vector bi, written as aijbj implies summation over j,

aijbj =
∑

j=1,2,3

aijbj . (2)

In this convention the dot product between two vectors, bi and ci is simply written as bici.
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Nomenclature

κij total thermal conductivity tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [W m−1 K−1]

κijvib vibrational thermal conductivity tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [W m−1K−1]

κijph phonon-gas channel thermal conductivity tensor, phonon-gas channel thermal conductivity
is more commonly called the lattice thermal conductivity κph = κL = κlat . . . [W m−1K−1]

κijdiff diffuson channel thermal conductivity tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [W m−1K−1]

ji heat flux vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [J m−2s−1]

C phonon heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [J K−1m−3]

g density of phonon states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s m−3]

vig group velocity vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m/s]

vip phase velocity vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m/s]

vs speed of sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m/s]

vL,T longitudinal and transverse sound speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m/s]

Wk,k′ scattering probability from state k into state k′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s−1]

Γ scattering rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s−1]

τ relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s]

~ reduced Plank’s constant h/2π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [J s]

kB Boltzmann’s constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [J K−1]

H Crystal Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [eV]

T Crystal kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [eV]

U Crystal potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [eV]

k phonon wavevector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m−1]

s phonon branch index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [unitless]
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ω phonon angular frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s−1]

Φαβγ
ijk 3rd order interatomic force constants. Read, the force on atom α in the i direction when

atoms β and γ are displaced in the j and k directions, respectively. . . . . . . . . . . . . . [eVÅ−3]

Φαβ
ij 2nd order interatomic force constants. Read, the force on atom α in the i direction when

atom β is displaced in the j direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [eVÅ−2]

nBE Bose-Einstein distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [unitless]

mα Mass of atom α in the crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [kg]

uαi Atomic displacement vector of atom α in the crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]

θD Debye temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [T]

θGB grain boundary angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [o]

γ Grüneisen parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [unitless]

γGB grain boundary energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [J m−2]

γst grain boundary strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [J m−2]

γcore grain boundary core energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [J m−2]

εij symmetric strain tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [unitless]

Rij anti-symmetric rotation tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [radians]

Rκ thermal boundary resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m2 K W−1]

hB thermal boundary conductance, hB = R−1
κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [W m−2 K−1]
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Chapter 1

Introduction

Thermal energy and the thermal properties of materials impact our daily lives, and the society in
which we live, in many direct and indirect ways. Direct impacts include domestic, commercial, and
automotive climate control, the overheating of a computer or device, thermal runaway explosions of
Li-ion batteries, and of course cooking. However, there are many indirect impacts which are equally,
if not more, important. Indirect impacts include thermal limitations in computer processing speed
(clock rate), maximum power and range of wireless networks, and power production in the space
industry and exploration (radio isotope thermoelectric generators, RTGs). Additionally, 60 to 70%
of the energy consumed in the United States is wasted, the majority in the form of waste heat
[1]. Controlling the thermal properties of materials is critically important for mitigating and/or
reusing the heat wasted during energy production, conversion, and utilization. Thermal transport
science plays an integral role in the development of next generation electronic devices, and clean
and sustainable energy solutions.

Comparing the overall landscape of thermal and electrical transport of solids provides a nice per-
spective when analyzing the challenges facing thermal science. Figure 1.1 shows the range of thermal
and electrical conductivity for all solids. The electrical conductivity of all solids ranges over about
26 orders of magnitude, and can span approximately 6 orders of magnitude within a material system
such as silicon. In contrast, the thermal conductivity of all solids ranges over 5 orders of magnitude,
and can span approximately 1.5 orders of magnitude within a material system such as silicon. The
main reason for this dramatic difference is that the number of carriers for electronic conductivity
(the electron or hole carrier concentration) can be shifted by orders of magnitude relatively easily
by chemical doping. The analog to carrier concentration for thermal conductivity is a material’s
heat capacity. There is no straight forward way to dramatically change a material’s heat capacity.

Imagine for a moment that we had the scientific knowledge and technological capability to tune
thermal conductivity of solids by 26 orders of magnitude, or the capability to tune the thermal
conductivity of a given material system by 6 orders of magnitude. Thermal limitations are so
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Figure 1.1: The general ranges of thermal (κ) and electrical (σ) conductivity for solids. Thermal conductivity
spans approximately 5 orders of magnitude while electrical conductivity spans approximately 26. Within a
material system, such as silicon (Si), thermal and electrical conductivity can be changed by approximately
1.5 and 6 orders of magnitude, respectively.

ingrained in our intuition, that imagining the world in this way may not be an easy task. If
we had such capabilities, energy consumption would likely plummet, computer processing speed
would likely skyrocket, wireless network speed and coverage would be dramatically increased, and
electronic devices and vehicles would charge in minutes (possibly even seconds). Unfortunately, it
would still take approximately five minutes to boil a four liter pot of water.

Due to the physical limitations of materials, mainly on a materials heat capacity, such a dramatic
technological achievement is unlikely. In practice the thermal sciences, like most fields, tend to
progress with continuous and moderate improvements in understanding and capability. This thesis
aims to contribute to this progress by establishing materials design principles for controlling thermal
transport in defective and complex crystals. The materials systems studied here are most directly
relevant to microelectronic and thermoelectric technologies, which we now introduce.
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1.1 Thermal management of microelectronics

Since the first experimental demonstration of the field effect transistor in 1947 and its rapid com-
mercialization in the early 1950s, microelectronics have become rapidly integrated into the world
economy and culture. Transistors are the basic building block for a computers central processing
unit (CPU) and its processing speed is set by the speed at which the transistors can switch between
their on and off state (clock rate). Switching the state of the transistor requires pushing electrons
through the integrated circuit and often dumping this charge to ground producing heat which raises
the operating temperature of the device. In fact, nearly all of the energy used to operate a CPU, is
converted to heat which must be removed. The device’s maximum operating temperature sets the
maximum operating power and computing speed. The faster the heat removal, the lower the operat-
ing temperature for a given operating power. This is the concept of the integrated circuits thermal
design power, or the power at which the device can be run at without exceeding the maximum
transistor junction temperature [2].

Field effect transistors inherently have many interfaces. The volumetric density of transistors and
material interfaces in CPU has dramatically increased over the past decades. The thermal resistance
of transistor devices is strongly influenced, and sometimes dominated, by internal thermal boundary
resistances. Beyond CPUs, the electrification of transportation and the development of an electrical
grid which can cope with intermittent power supplies from renewal energy sources, requires ad-
vancement in power electronics and wide band gap semiconductors. The maximum temperature of
Si based electonics is approximately 100 oC. Above this temperature carriers have enough energy to
jump silicons band gap and the electronic device looses functionality. Wide band gap semiconduc-
tors can be operated at much higher temperature, making them suitable for the high power levels
required by electric vehicles and the energy grid. The thermal properties of the microelectronic
devices discussed above are strongly influenced by their crystalline defects and interfaces. Many of
these defects and interfaces are required for the operation of the device, meaning that finding engi-
neering solutions to simply remove them is not a valid solution. Therefore, advancement in many
microelectronic technologies requires the development of materials design principles for controlling
thermal transport with defects [3, 4, 5].

1.2 Thermoelectrics

Thermoelectrics (TEs) are a class materials which convert heat directly to electricity and vice versa.
TE energy conversion is a solid state process, with no moving parts, which operates through the
Seebeck (or Peltier) effect. When the heat flow of the entire TE system is optimized (i.e. thermal
load matching between the TE module and heat exhangers) the maximum possible conversion
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efficiency is given by

η =
Th − Tc

Th

√
1 + ZT − 1√

1 + ZT + Tc/Th

(1.1)

which depends on the hot and cold side temperature (Th and Tc), and the device figure of merit ZT .
The device figure of merit ZT (denoted with an upper case Z), is set by the temperature dependent
material figure of merit zT (denoted with a lower case z), as well as Th and Tc. The material figure
of merit is given by

zT =
α2 σ

κ
T, (1.2)

where α is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity, T
is the absolute temperature. The materials power factor, α2σ, characterizes the electrical aspects
of TE transport. ZT and the average value of zT over a given temperature can be very different,
especially when zT varies significantly across the temperature range. ZT , for a desired Th and Tc,
can be easily calculated from temperature dependent zT with an algorithm provided by Snyder
and Snyder [6]. Nonetheless, a higher zT will inevitably result in a larger ZT . Therefore, if the
thermal design of entire TE system can be optimized (i.e. TE leg geometry, hot and cold side
heat exchangers etc.), then zT provides a metric for the maximum efficiency a device can achieve
using this specific TE material. It is important to note that there are applications which contain
engineering limitations prohibiting optimal thermal design (e.g. wearable TEs). In these cases heat
exchanger design is likely a more pressing concern than TE material improvement.

Each material parameter in zT depends on the material’s carrier concentration. If the band structure
of a material is known, the optimum carrier concentration for the material can be calculated.
Therefore, when exploring different TE material systems, it makes more sense to examine the
materials quality factor, B, which is carrier concentration independent [7]

B =

(
kB

e

)2 σE0

κvib
T. (1.3)

κvib is the thermal conductivity carried by atomic vibrations (often referred to as the lattice thermal
conductivity), and σE0 is a transport coefficient with units of electric conductivity which character-
izes how well a material conducts electricity at a given carrier concentration. If the materials carrier
concentration can be optimized, B gives the maximum zT that could be achieved in that material
system. By examining B, one sees the TE material optimization problem boils down to maximizing
the ratio σE0/κvib. Utilizing microstructural defects to reduce κvib while leaving electrical transport
and σE0 unchanged is a major focus in the field of TEs. σE0 can be improved by increasing the ‘com-
plexity’ of the electronic band structure at the Fermi level [8], which is sometimes parameterized
as a valley degeneracy or the number of distinct carrier pockets NV. Most of this thesis will focus
on developing materials design principles for optimizing κvib. Electronic band structure properties,
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which impact σE0 , will be discussed in Chapter 6.2.2.

To summarize, minimizing κvib, while keeping electronic transport constant, will maximize a materi-
als B, which determines the maximum achievable zT if the carrier concentration can be optimized.
zT gives the maximum η a device can achieve using this material, if the systems level thermal
transport can be optimized (e.g. if sufficiently large heat exchangers can be used).

1.3 Thesis overview

Heat transport is generally well understood in simple, defect free crystals [9]. However, the technolo-
gies reviewed in Sections 1.1 and 1.2, as well as many others, are limited by thermal properties of
materials which contain defects. The structure of these defects is also generally well understood and
many concepts extend from the well established field of metallurgy. One main challenge facing the
thermal sciences is to explain the influence of defects on the thermal conductivity. Additionally, our
basic understanding of phonon transport is typically grounded in the phonon-gas model. Within
the phonon-gas model phonon wave packets are defined which can be viewed as quasi-particles
propagating through the solid. A growing body of work has shown that the phonon-gas model is
incomplete for solids exhibiting a thermal conductivity in lower 2 to 3 orders of magnitude shown in
Figure 1.1. However, a detailed understanding of the breakdown of the phonon-gas model has not
yet been established. The work in this thesis aims to address these limitations and is summarized
as follows.

Chapter 2 reviews the fields current theoretical understanding. It starts by defining the thermal
conductivity, highlighting that there are theoretically two channels for phonon conduction. One
is the standard phonon-gas model and usually dominates in simple crystals. The second one we
term the diffuson-channel since it is mathematically the same conduction channel through which
diffusons were defined [10], and becomes important in highly defective and/or complex crystals, as
well as amorphous materials. Chapters 3 and 4 only explicitly consider the phonon-gas channel. The
diffuson-channel is considered in Chapter 5. Chapter 2 proceeds to review the standard theory of
phonons and simulations for phonon transport through the phonon-gas channel in perfect crystals.
Next, general concepts of phonon-defect scattering are reviewed and several modeling procedures
for explaining phonon transport across interfaces are reviewed and compared. In Chapter 3 phonon
grain boundary interactions are examined. We present the concept of a dimensionality crossover
which we find to be essential for explaining phonon grain boundary scattering. The concept of
a dimensionality crossover acknowledges that long wavelength phonons see the interface as a two
dimensional plane, while shorter wavelength phonons see the atomic structure of the interface. The
results presented suggest that shorter wavelength phonons see clean low-energy grain boundaries as
a collection of linear defects, and that phonon interactions with the localized grain boundary strain
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field dominate. In Chapter 4 we theoretically and experimentally demonstrate the importance of
defect induced lattice softening, or the reduction of phonon frequencies, elastic moduli, and speed of
sound. This is a fundamentally different mechanism through which defects can reduce a materials
thermal conductivity. It is shown to be important in nanocyrstalline Si, PbTe, and SnTe systems
and can be achieved through chemical and/or microstructural means. In Chapter 5 we turn to
the breakdown of the phonon-gas model by examining the Yb14MSb11 material system (where M
is Mg or Mn) which has a very complex crystal structure containing 104 atoms per unit cell. By
examining the lattice dynamics computationally and experimentally we show that this material
system is expected to conduct heat through the diffuson-channel similar to an amorphous material
even though it is indeed a crystal. This case study reveals a mechanism for the break down of the
phonon-gas model and the transition from crystalline-like to amorphous-like thermal conduction.
Chapters 2 through 5 focus on establishing general physical principles and the materials studied are
treated as model systems through which a basic understanding can be established. In Chapter 6 a
more targeted materials design strategy is adopted where the thermoelectric properties of the CoSb3

system are improved through the controlled use of defects. This is achieved by controlling thermal
properties by the modification of grain boundary with two-dimensional graphene, and controlling
the electrical band structure with point defects and chemical doping.



18

Chapter 2

Background

2.1 Thermal conductivity

Consider that one side of a homogeneous solid is brought into contact with a heat source raising its
temperature to TH and that the heat is removed from the other side by use of a heat sink setting its
temperature to TC < TH and establishing a temperature gradient, ∇iT (Figure 2.1). When steady
state is reached, a flux of heat, ji, will be established which is constant in time and space. The value
of ji in the solid is set by the material’s thermal conductivity κij which is defined using Fourier’s
law

ji = −κij ∇jT. (2.1)

Given a designated ∇iT , a material with a low thermal conductivity will have a low heat flux ji,
and vice versa. κ is the sum of the thermal conductivity due to each heat conduction channel. The
most common channels considered are atomic vibrations (κvib) and electrons (κe) (omitting the
tensor superscripts)

κ = κvib + κe + ... . (2.2)

κe is set by the electrical conductivity (σ) and Lorenz number (L), as κe = LσT . Most of this thesis
will focus on the heat carried by atomic vibrations κvib.

In a solid, where the forces between atoms are assumed to be harmonic and periodic boundary
conditions are upheld, the normal modes of vibration are called phonons. Describing vibrational
modes as phonons is common in crystalline materials. However, when periodic boundary conditions
are applied to simulations of amorphous materials the phonon description rigorously holds as well.
This approximation seems to maintain much of the essential physics and has provided many valuable
insights.
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Figure 2.1: An illustration of a solid in which heat is flowing. A source has injected heat on the left side, and
on the right side there exists a sufficiently large heat sink. When stead state is reached a thermal gradient
∇iT has been established. The magnitude of the heat current ji is set by the materials thermal conductivity
κij through Fourier’s law, Eq. 2.1.

The heat flux due to phonon transport is given by [11, 12]

ji =
∑

kss′

a†ksaks′j
i(kss′) (2.3)

ji(kss′) =
~
V

(ω(ks) + ω(ks′))
2

vi(kss′). (2.4)

The meaning of these equations will become more clear as they are formulated further below. We
will come to find that the diagonal (s = s′) and off-diagonal (s 6= s′) terms in the sum in Eq. 2.3
have very different physical interpretations. Following the conventional phonon representation, each
phonon mode is designated by its wavevector k and branch (polarization) index s. ji(kss′) is the
heat current matrix with rows s′ and columns s. The phonon creation and annihilation operators
are given by aks and a†ks, respectively. vi(kss′) is a term with units of m/s for which we adopt
different names for diagonal and off-diagonal elements. For diagonal elements, vi(kss) = vig(ks) is
the phonon group velocity. For off-diagonal elements, vi(kss′) is a normal mode mixing parameter.

One way in which phonons can conduct heat is by constructing wave packets which propagate at
a speed equal to the magnitude of the phonon group velocity vector, vg. Since these wave packets
behave like particles and obey essentially the same transport physics as gas particles, we call this
mechanism phonon transport through the phonon-gas channel, or simply phonon transport1 κph.
The thermal flux and conductivity due to the phonon-gas channel are given by (see Appendix C

1The term lattice has a specific meaning in crystallography and is simply an array of points in space. Lattice
thermal conductivity refers to the thermal conductivity through a crystal which is defined using a crystallographic
lattice. A lattice, being simply an array of points in space, can not have a thermal conductivity, however a crystal
defined using this lattice can. Therefore, phonon thermal conductivity κph is a more precise term.
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and Eq. 2.17)

jiph =
1

V

∑

ks

n(ks) ~ω(ks) vig(ks) (2.5)

jiph = −κijph∇jT. (2.6)

By recognizing that a†(ks)a(ks) becomes the number of phonons in the state ks, n(ks), it is clear
that jiph is simply diagonal portion of ji. This mechanism is very effective at conducting heat and
typically dominates in simple crystals.

Another mechanism through which phonons can conduct heat is by transferring thermal energy from
one mode to another due to normal mode mixing. This results in heat being transferred diffusely
in a random walk type manner and normal modes conducting heat in this way have therefore been
named diffusons [10]. We call this phonon transport through the diffuson channel, κdiff . The thermal
flux and conductivity due to the diffuson channel are given by

jidiff =
1

V

s 6=s′∑

kss′

a†ksaks′
~(ω(ks) + ω(ks′)

2
vi(kss′) (2.7)

jidiff = −κijdiff∇jT. (2.8)

These two channels contribute additively to the vibrational thermal conductivity [11]

κvib = κph + κdiff . (2.9)

The diffuson channel is in principle present in all solids, but tends to become important in amorphous
materials [10] and crystalline materials that are anharmonic [13] and/or have very complicated
crystals structures with many atoms per unit cell (Chapter 5). As defects are introduced, it is
expected that the phonon-gas channel will be suppressed and the diffuson channel will be promoted
[14]. The transition between κph- and κdiff -dominated heat conduction with increasing crystal
complexity, anharmonicity, and defect concentration is an important avenue of ongoing research.
The current paradigm of understanding is that in crystals the phonon-gas channel is so large it
dominates κvib making it common to assert that κvib = κph. In Chapters 3 and 4, and Section
6.1 we consider the suppression of the phonon-gas channel due to the introduction of defects. We
consider thermal conduction through the diffuson channel in Chapter 5. First, we review phonon
thermal conductivity in perfect crystals.
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Harmonic - 2nd Order Anharmonic - 3rd order
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κcalc=159 W/mK

κexp=157 W/mK

(e)

Figure 2.2: Phonons and phonon thermal conductivity of perfect, single crystalline Si computed using ab
initio based lattice dynamics and the phonon Boltzmann transport equation at 300K. The green lines show
analytical expressions which hold at low-ω, and highlight numerical artifacts which commonly accompany this
type of mode specific simulation. a) The phonon dispersion relation along Γ−X calculated from 2nd order
interatomic force constants (Appendix B). b) The spectral heat capacity (Eq. 2.18). c) Mode dependent
phonon group velocity, vg(ks) (dots) and the isotropic average group velocity at a given frequency vg(ω) (line,
Eq. 2.19). d) The phonon dispersion relation with phonon line broadening defined by the phonon-phonon
scattering relaxation time. The discrete behavior in k is not physical and represents the discrete nature of
the uniform k-mesh. Note that we use a relatively dense mesh of 30 x 30 x 30. e) The mode dependent
relaxation time due to phonon-phonon scattering τ(ks) (dots), and the isotropic average relaxation time at
a given frequency τ(ω) (line, Eq. 2.20). The inset shows a τ ∝ ω−2 fit to the computational data at low-ω.
f) The spectral thermal conductivity computed using the data points shown in panels a, c, and e. The peak
at 5 meV is artificial and is due to poor sampling of k-space below 10 meV. From analytical consideration
(green lines), κ(ω) should converge to a constant value as ω → 0 rather than go to zero.

2.2 Phonons in perfect crystals

Before examining how crystalline defects will influence heat conduction by phonons, we first must
understand phonons in perfect crystals. This will be achieved by mathematically describing how
atoms vibrate in crystals. This field of study is often referred to as lattice dynamics and McGaughey
et al. provide a nice tutorial [9]2.

2.2.1 Lattice dynamics

We begin with the end in mind, which is shown in Figure 2.2. Phonons can be mathematically
defined by solving the equations of motion of a crystal, assuming harmonic coupling between all

2Note, we use i, j, k for Cartesian directions, and α, β, γ for atomic labels to keep consistent with the tensor
notation used in this thesis. McGaughey et al. flip this.
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atoms (read F = mẍ, with F = kx). These solutions are often visualized in a phonon dispersion
relation (Figure 2.2a), or a plot of the phonons inverse wavelength or wavevector, k, versus its
energy, ~ω (~ is the reduced Plank’s constant and ω is the phonon frequency). The phonon dispersion
relation is, in essence, a Fourier transform of the interatomic force constants weighted by the atomic
mass, and naturally contains information about the symmetry of the lattice.

The basis of lattice dynamics starts with the crystal Hamiltonian H which describes the energy of
the system as the sum of the kinetic energy T and the potential energy U of all of the atoms in the
crystal

H = T + U. (2.10)

The kinetic energy of a single atom in a crystal on lattice site α moving in the Cartesian direction i is
given by mα(u̇αi )2/2. Here, mα is the mass of the atom, uαi is the time varying atomic displacement
vector, and u̇αi is its velocity (the dot denotes the derivative with respect to time). The total kinetic
energy is then given by summing over all lattice sites and directions

T =
1

2

∑

α

∑

i

mα(u̇αi )2 . (2.11)

The potential energy is treated as a Taylor expansion about the equilibrium atomic position (uαi = 0)
where the first non-zero term is the harmonic potential energy

U =
1

2!

∑

αβ

∑

ij

Φαβ
ij u

α
i u

β
j +

1

3!

∑

αβγ

∑

ijk

Φαβγ
ijk u

α
i u

β
j u

γ
k + ... , (2.12)

or simply
U = U2nd + U3rd + ... . (2.13)

Φαβ
ij and Φαβγ

ijk are the second and third order derivatives of the potential energy with respect to
atomic displacements, and are often referred to as the 2nd and 3rd order interatomic force constants
(IFCs). Φαβ

ij can be read as the force on atom α in the i direction when atom β is displaced in
the j direction. Φαβγ

ijk can be read as the force on atom α in the i direction when atoms β and
γ are displaced in the j and k directions, respectively. These constants can be readily calculated
in perfect single crystals using density functional theory (DFT) with various computational suites
(VASP [15], QuantumExpresso [16], Phonopy [17]). Additionally, there are databases containing
IFCs of many compounds to 2nd [18] and even 3rd order [19]. It seems that for many materials
treating U to 3rd order is sufficient [9]. In some very anharmonic materials materials such as NaCl
4th order IFCs become important and play the role of renormalizing the phonon dispersion relation
and opening up additional scattering phase space [20]. In this thesis we will only consider U up to
3rd order.



23

Within this treatment we can write the lattice Hamiltonian truncated to 3rd order as

H = T + U2nd + U3rd. (2.14)

This expression, together with Eqs. 2.11 and 2.12, is useful when determining how a given defect
will perturb phonons, and we will return to this in later sections.

If we only consider H to 2nd order, the following equation of motion can be written

−
∑

jβ

Φαβ
ij u

β
j = üαi mα . (2.15)

This equation is simply Newton’s 2nd law stating that the force on atom α in the i direction due
to all other atoms in the crystal β, −∑jβ Φαβ

ij u
β
j , is equal to its acceleration in that direction, üαi ,

times its mass mα. This differential equation can be solved by transforming to reciprocal space
(Appendix A) and assuming plane wave solutions for uαi (Appendix B). These solutions are shown
for Si in Figure 2.3a. The data points (horizontal dashes) show the k-points for which the phonon
properties were calculated, lying on a 30 x 30 x 30 uniform k-mesh withing the first Brillouin
zone (Appendix A). Note that phonon properties below 10 meV are sampled very poorly with this
uniform k-meshing procedure, even when we use a relatively dense grid. This point will become
important when considering the spectral phonon properties. First we will examine how phonons
conduct heat.

2.2.2 Phonon thermal conductivity

The phonon thermal conductivity, κph, determines the amount of heat carried by phonons when a
material is put under a temperature gradient (Figure 2.1). This transport property is a 3x3 tensor,
κijph where i and j are the three Cartesian directions. κijph denotes how much heat is conducted in
direction i due to a temperature gradient in direction j. However, in cubic crystals all off diagonal
terms are zero and the three diagonal terms are equal, such that κijph reduces to a scalar κph, times
the Kronecker δij .

It is important to note that the energy scale of phonons is small compared to electrons. The
maximum phonon frequency shown in of Figure 2.3 is approximately 65 meV, where kBT = 25 meV

at room temperature (T = 300 K). Therefore, all the phonons in Si will be populated at around
2.5 times room temperature. This is one intrinsic material property that the Debye temperature
(θD) strives to quantify, the temperature at which all vibrations in a material are active. The
Debye temperature of Si is θD = 660 K which is 2.2 times room temperature. There are many ways
to measure and compute θD, and one should only compare the magnitude of θD values that are
determined by a consistent method. Several methods for quantifying θD are reviewed in Appendix
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E. Important relations are

kBθD = ~ωD = ~vs

(
6π2

V

)1/3

, (2.16)

where ωD is the Debye frequency, vs is the average speed of sound (Eq. E.1.1), and V is the volume
per atom.

Another important feature that distinguishes phonons from electrons is that they are bosons rather
than fermions, meaning that they do not obey the Pauli exclusion principle and they are governed
by Bose-Einstein statistics rather than Fermi-Dirac statistics. Practically, this means that the whole
spectrum of phonons contributes to transport. In stark contrast, only electrons near the Fermi level
contribute to transport. Consequently, for phonon transport there is, in essence, an averaging effect.
By this, we mean that subtle features and changes to a band structure tend to have much more of
an impact on electron transport than they do on phonon transport. Additionally, the concept of
adding and removing carriers does not exist for phonons in the same manner as for electrons. One
can dope a semiconductor and dramatically change the number of charge carriers. The analog to
electron charge for atomic vibrational energy is the heat capacity, and the heat capacity of a solid
is more or less fixed since it is closely tied to the number density of atoms.

These important features in phonon transport are reflected in the formula for κph,ij which is obtained
by solving the Peirels Boltzmann transport equation (BTE), in the relaxation time approximation
(see details in Appendix C)

κijph =
∑

ks

C(ks) vig(ks) vjg(ks) τ(ks). (2.17)

C(ks) is the heat capacity of the specific phonon mode (Eq. C.0.9), where we use a short hand for
identifying a phonon mode by denoting its wavevector k and its branch index s with the compound
label ks. vig(ks) = dω(ks)/dki is the component of the phonon group velocity vector pointing in
the i direction. τ(ks) is the lifetime of the phonon, or its time between collisions.

The quantities present in Eqs. 2.17 can be readily computed using ab initio based lattice dynamics
and the results for a perfect, infinite (i.e. no crystal boundary scattering), Si crystal is shown in
Figure 2.2a, c, and e. For these calculations, the 2nd and 3rd order IFCs from the almaBTE database
were used [19], along with the associated computational suite for computing phonon energies and
lifetimes. To gain physical insight into the phonon thermal conductivity, and to prepare for the
modeling of complex systems, which can not be simulated in such detail, we will reduce this ‘mode
specific’ model with ks specific properties to a ‘spectral’ model with ω dependent properties, in the
following sections.
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Spectral phonon thermal conductivity

Often times it is informative to analyze the spectral behavior of Eq. 2.17. by defining the spectral
phonon heat capacity

C(ω) =
∑

ks

C(ks)δ(ω − ω(ks)), (2.18)

and the average group velocity and relaxation time at a given frequency

vg(ω) =

∑
ks vg(ks)δ(ω − ω(ks))∑

ks δ(ω − ω(ks))
, (2.19)

τ(ω) =

∑
ks τ(ks)δ(ω − ω(ks))∑

ks δ(ω − ω(ks))
. (2.20)

Note that by omitting the Cartesian index in vg(ks) we are implicitly referring to the magnitude of
the group velocity of phonon mode ks. Since

∑

ks

δ(ω − ω(ks)) = g(ω), (2.21)

is the phonon density of states (pDOS), Eqs. 2.19 and 2.20 are simply pDOS weighted averages of
vg(ks) and τg(ks).

With the definitions given in Eqs. 2.18, to 2.20 we can write down a spectral decomposition of Eq.
2.17

κph =
1

3

ωmaxˆ

0

C(ω) vg(ω)2 τ(ω) dω. (2.22)

This equation is commonly called the single mode isotropic approximation, since it can be envisioned
as describing all the phonons in the system with a single isotropic phonon branch. It is also possible,
and sometimes useful to not make the single mode approximation. In this case the sum over s would
be omitted in Eqs. 2.18, to 2.20, and one would be included outside of the integral over ω (Eq.
2.23).

Alternative to computing vg(ω) and τ(ω) using Eqs. 2.19 and Eqs. 2.20, one can define them
analytically using approximations for the phonon dispersion relation and semi-empirical expressions
for the phonon relaxation time. Unlike the mode dependent treatment with uniform k-mesh de-
scribed above (Eq. 2.17, and Fig. 2.2), this analytic treatment is effective at describing acoustic
phonons particularly at low-ω. This procedure is commonly called Callaway-Klemens type model-
ing of phonon transport, and can be useful when interpreting emergent phenomena in the thermal
transport of complex, defective systems in which a mode resolved treatment (Eq. 2.17) is either
exceedingly difficult or impossible.
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Using the information shown in Figures 2.2b, c, and e, the spectral thermal conductivity (κph(ω) =

C(ω) vg(ω)2 τ(ω)/3) can be computed and is shown in Figure 2.2f. It can be seen that the majority
of the heat is carried by acoustic phonons, below 25 meV, due primarily to their very long relaxation
times. While optical phonons indeed have a lower vg(ω), they carry much less heat primarily due
to their very low τ , due to a large phase space for phonon scattering.

Now we take a closer look at the behavior of low-ω phonons (below 10 meV). Understanding the
behavior of κph(ω) as ω → 0 is particularly important when considering the impact of extended
defects such as grain boundaries, interfaces, and dislocation strain fields since they will influence
low-ω phonons (Section 2.3). From examining the computational results in Figure 2.2f (black line)
it may seem that phonons below 2 meV do not carry heat. This conclusion may even seem intuitive
since there are very few phonon modes at this low energy; i.e. the pDOS, and C go to 0 as ω → 0.
However, this attribute is a computational artifact and through analytical considerations one can
show that low-ω phonons are indeed important for thermal conductivity. We start by recalling that
at low-ω and/or at T > ωD, C(ω) ≈ 3kBg(ω). At low-ω, vg(ω) = vs and g(ω) ∝ ω2. These ω
dependencies are shown as the green lines in 2.2b and c. Next, the inset of Figure 2.2e shows that
τ ∝ ω−n with n = 2 at low-ω. In Section 2.2.2 we discuss the physics of intrinsic phonon-phonon
scattering and justify this analytical form. By comparing the ω-dependence of C(ω), v(ω), and τ(ω)

at low-ω it can easily be seen that we expect κph(ω) to approach a constant value as ω → 0 (green
line), and not go to zero (black line). If κ(ω) truly approaches zero as ω → 0, then τ must scale
as ω−n with n < 2. In reality τ typically scales with n = 2 to 3. Recall that a uniform k-mesh is
used to approximate the Brillouin zone integration and phonon relaxation times are not computed
at the Γ-point (k = 0). Therefore the phonon properties below 10 meV are sampled very poorly
(see Figure 2.2a), even when a relatively dense (30x30x30) mesh is used.

This analysis provides an important physical insight. First we define the amount of heat carried
by phonons within a small band of frequency dω centered around ω as κph(ω) dω. Therefore, since
κph(ω) is constant at low frequencies, phonons within dω approaching the Γ-point, ~ω ≈ 1 meV,
carry as much heat as phonons within dω at higher frequencies, ~ω ≈ 10 meV. This analysis
highlights that it is important to ensure that not only the magnitude of the thermal conductivity
is converged, but also that the spectral thermal conductivity is converged, with respect to k-mesh
density, especially when phonon properties near the Γ-point are important. Extended crystal defects
such as phonon-dislocation and phonon-interface scattering are known to influence low frequency
phonons, as we discuss in Section 2.3. Therefore, this misrepresentation of the near Γ-point phonons
will likely cause errors if one were to use this uniform k-mesh treatment as the basis of a multiscale
model. Before discussing phonon-defect interactions we must first understand intrinsic phonon-
phonon scattering which arises from the natural anharmonicity of a crystal.
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Anharmonicity

When anharmonicity is introduced, i.e. U3rd is included, phonons interact. One intuitive way for
conceptualizing anharmonicity, is that now when atoms are displaced from their equilibrium lattice
positions (i.e. strain is introduced) the forces between the atoms are changed with respect to what
they would have been in the harmonic approximation. Simply put, the spring constants change
when strain is present. The larger the strain the larger the change in the spring constants. This
change in force constants changes the phonon energy which can induce a scattering event, and
can change the speed at which the phonon travels. These atomic displacements can arise from
other phonons or from static strain fields in a crystal which are induced by crystal defects (e.g.
dislocations, interfaces, point defects).

One can understand anharmonic interactions in the context of Eqs. 2.12 and 2.14 as follows. The
energy of a phonon associated with the atomic displacement vector uαi (r, t) is changed by the atomic
displacement field uβj (r, t) and is then scattered into a new phonon associated with the displacement
vector uγk(r, t). Note, the assignment of i, j, k and α, β, γ is arbitrary and u can be a function of
position r and/or time t. If uβj is associated with another phonon containing vibrational energy,
then the interaction changes the energy of the incident phonon, meaning the incident (uαi ) and
scattered phonons (uγk) will have different energies. Therefore, this interaction is commonly referred
to inelastic, phonon-phonon scattering. If uβj is associated with a static strain field which contains
no vibrational energy (uβj only a function of r), the energy of uαi and uγk will be equal and we call
this elastic strain field scattering. If anharmonicity is not included, the interaction of phonons with
other phonons, as well as static strain fields induced by crystal defects will be neglected.

In terms of the phonon dispersion relation of Si shown in Figure 2.2a, the introduction of anhar-
monicity will introduce a broadening in energy of the phonon states shown in Figure 2.2d. This
broadening is commonly described as a Lorentzian peak with a full width half maximum equal to
twice the phonon scattering rate, 2Γ(ks) = 2/τ(ks) [21, 22]. The discrete nature of the dispersion
relation in the k direction of Figure 2.2a and d is not physical, but represents the space between wave
vectors computed on a uniform k-mesh. A broadening in the k-direction of a phonon dispersion
relation is related to the phonon coherence length in real space [23] and no information about this
quantity is explicitly contained within this theoretical framework. In Figure 2.2, we only consider
the phonon scattering and line width due to intrinsic phonon-phonon interactions, which arise from
the crystal’s natural anharmonicity.

Intrinsic phonon-phonon scattering

The scattering from other phonons in three-phonon processes can be computed if 2nd and 3rd order
IFCs are known. It is now common place to compute these IFCs using DFT, and several open



28

source codes are available which compute the three phonon scattering rate using Fermi’s Golden
Rule Eq. G.0.1. The tutorial provided by McGaughey et al. reviews this method (Eq. 26 of [9]),
and we briefly outline it in Appendix G.1. We will apply Fermi’s Golden Rule to phonon-defect
scattering in Section 2.3. Here we will attempt to build physical insight for three phonon scattering
processes and present a semi-emperical analytical form which can capture some of this physics.

We start by considering an interesting question which has historically received much debate [24,
25, 26, 27]: Will a defect free, infinite crystal have infinite thermal conductivity? In such a case
the only phonon scattering mechanism would be scattering off of other phonons due to the natural
anharmonicity of the crystal. While this question may seem academic at first glance, a conclusive
answer would bring with it an accurate prediction of how extended defects such as interfaces will
influence the thermal conductivity, which is a topic of technological importance.

One can understand this problem by examining the spectral decomposition of the thermal conduc-
tivity (note we do not make the single mode approximation as we did in Eq. 2.22, and therefore
maintain the branch index s)

κph =
1

3

∑

s

ωmaxˆ

0

C(ω, s) vg(ω, s)2 τ(ω, s) dω. (2.23)

To see where the proposed question arises, we examine the lower bound of the integral over ω. First,
we assign τ(ω) the general form

τ(ω, s) = A(T, s)ω−n, (2.24)

which contains a temperature dependent constant A(T, s) and an arbitrary frequency dependence
n. As ω → 0, vg(ω, s) = vs(s), and the spectral heat capacity becomes C(ω, s) = kBω

2/(2π2vs(s)
3).

With these low-ω approximations Eq. 2.23 becomes

κph =
kB

6π2

∑

s

A(T, s)

vs(s)

ωmaxˆ

0

ω2−n dω. (2.25)

From this representation one can easily see that the exponent in the power law dependence of the
lifetime, n, is the critical parameter. If any of the branches s contain phonons exhibiting a power
law dependence with n ≥ 3, then κph will diverge to infinity if there are no other phonon scattering
mechanisms. Consequently, the power law dependence of the phonon lifetime at low-ω is critical for
determining the strength at which extended defects, such as interfaces and dislocations, will reduce
κph. Early theories predicted phonon lifetimes at low ω would exhibit n = 4, therefore several
theories indeed predicted that the thermal conductivity would diverge to infinity if the materials
were infinite and defect free [27]. There are several consequences of phonons exhibiting n ≥ 3.
First, the thermal conductivity of very clean crystals would continue to increase as crystal size
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increases. Second, computationally the thermal conductivity would not converge with increasing
k-mesh density. It seems that neither of these attributes are observed in bulk crystals, suggesting
that in most cases n < 3.

C. Herring provides a nice discussion about this and tabulates n for various crystal classes [27]3 .
The work shows that when phonon dispersion anisotropy is included when deriving the form of τ ,
at low-ω where the dispersion relation is linear n is often between 2 and 3.

We now compare the semi-empirical form in Eq. 2.24 to the DFT based results for τ given in Figure
2.2e. Silicon has the space group Fd3̄m and is in the Oh crystal class. According to Table II of
Herring [27], n = 2 when the dispersion is linear. The inset of Figure 2.2e shows a τ ∝ ω−2 fit to
the simulated results.

While the mode dependent treatment (Eq. 2.17) is tractable for perfect single crystalline systems,
there are limitations when utilizing this approach to predict the thermal conductivity of defective
systems. Several cases do exist demonstrating that DFT based lattice dynamics and Boltzmann
transport can capture the influence of certain point defects. Utilizing this mode dependent ap-
proached to describe large systems with extended defects such as interfaces and dislocations often
requires some level multi-scale modeling. We will use the analytical treatment provided in Eq. 2.22
to identify the dominant mechanisms which reduce κph in defective systems.

2.3 Phonons in defective crystals

Two fundamentally different mechanisms through which defects influence the phonon thermal con-
ductivity are phonon scattering and lattice softening. Both are illustrated in Figure 2.3. In the
phonon scattering picture the energy of the phonon branches, and therefore the elastic moduli and
speeds of sound are assumed to be unchanged. The defect introduces an additional scattering pa-
rameter τi (note i is not a Cartesian index here) and the phonon linewidth is broadened, Figure
2.3b to c. The decrease in τ is often modeled using Matthiessen’s rule

τ−1 =
∑

i

τ−1
i . (2.26)

By lattice softening we refer to the mechanism in which the defects can modify the elastic moduli,
speeds of sound, and energy of the phonon branches, Figure 2.3b and d. Since, in this case the
phonon dispersion is changed, the maximum phonon frequency ωmax, heat capacity C(ω), and
phonon propagation (group) velocity vg are changed. Additionally, the intrinsic phonon-phonon

3Only 3-phonon scattering processes are considered. Other effects contributing to τ can be important at very
low frequency MHz, such as thermoelastic and Akhieser damping [28]. The phonon spectrum extends up to the THz
scale, therefore in the context of the thermal transport of phonons we only consider 3-phonon processes.
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Figure 2.3: Schematic representations of phonon scattering and lattice softening. a) A real space depiction
of phonon scattering and lattice softening. b) The phonon dispersion and linewidth of a pristine crystal. c)
Phonon scattering due to the introduction of crystal defects. d) Lattice softening, reduced elastic moduli
and speed of sound due to the introduction of crystal defects.

scattering is changed as well since the phase space for 3-phonon scattering has changed. At high
temperatures, when phonon-phonon scattering dominates, we can analytically show that κph =

A/v3
sT . Therefore, κph is very sensitive to lattice softening.

Figures 2.3b through d represent these effects in reciprocal space. Figure 2.3a schematically rep-
resents this in real space. The phonon scattering picture shows the phonon changing propagation
direction while its frequency is unchanged. The lattice softening picture shows a decrease in phonon
frequency and propagation speed. In the following sections we will examine the theoretical and
experimental implications of these two distinct mechanisms.

2.3.1 Phonon defect scattering

Here we review analytical aspects of phonon-defect scattering. We attempt to build physical in-
tuition which may guide materials design strategies in technologies where thermal conductivity is
important. These fundamental aspects of phonon-defect scattering are important when control-
ling thermal conductivity with materials chemistry, nano/microstructure, and synthesis procedures.
Additionally, they are important to consider when analyzing computational simulations. The an-
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alytical treatment reviewed here illustrates expected behavior, and deviations from this behavior
may reveal interesting physics which has been captured computationally. Further, the analytical
theory reviewed here can be used to identify the limitations of a particular simulation method.

When crystal defects are introduced they will couple to the phonons in the material by perturbing
the lattice Hamiltonian, H, given in Eq. 2.14. If this perturbation varies in space or time, it can
induce phonon scattering. In this section we capture a spatially varying perturbation by consid-
ering the defects as introducing a scattering potential, V (r), and the resulting phonon scattering
process is computed in the context of Fermi’s Golden Rule perturbation theory (i.e. under the Born
approximation). We consider only elastic interactions4, meaning the incident and scattered phonon
have the same energy. The theory is formulated to capture first order physics, and therefore makes
several approximations to achieve closed form expressions which help establish physical intuition.

Effect of defect dimensionality

We start by considering the effect of just the dimensionality of the scattering defect on the ω-
dependence of the phonon lifetime. We follow the basic precepts of the theory of phonon scattering
and its contribution to lattice thermal conductivity as laid out, for example, by Ziman [29]. By
applying these precepts to elastic scattering from a defect with scattering potential V (r) (described
in more detail in Section G.2), the scattering rate or inverse relaxation time (Γ(k) = τ(k)−1) of a
phonon with wavevector k and frequency ω may be written as a product of three factors,

Γ(k) = nn̄d gn̄d(ω) |Mn̄d|2. (2.27)

The three factors n, g, and |M |2 are, respectively, the spatial density of the defect in the crystal,
the phonon density of states (pDOS), and a term containing the squared magnitude of a scattering
matrix element 〈

k′
∣∣H′
∣∣k
〉

= (LxLyLz)
−1

ˆ
d3rV (r)ei(k−k

′)·r, (2.28)

where V (r) is the scattering potential and LxLyLz is the volume of the crystal containing the defect.
It can be seen in Eq. 2.28 that the matrix element can be thought of a the Fourier transform of
the scattering potential V (r). The bar in |M |2 indicates that the magnitude of the matrix element
squared has been weighted by the forward scattering parameter and summed over possible final
states k′. The essential point, indicated by the subscript ‘n̄d’, is that all three factors depend on n̄,
the codimension of the defect. That is,

n̄ = 3− dd (2.29)
4The defect can also introduce additional vibrational states which can in principle change the energy of the

incident phonon, inducing inelastic scattering. While it is possible that inelastic phonon-defect interactions may
be important, we have (to date) not seen sufficient experimental evidence to support the argument that they are
important in the context of thermal transport.
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with dd being the dimensionality of the defect. Thus, for a one-dimensional defect such as a
dislocation line, dd = 1 and n̄ = 2, for a point defect dd = 0 and n̄ = 3, and so on.

We can understand Eq. 2.27 as follows. For example consider a line defect, so n̄ = 2. Suppose the
defect is parallel to the z axis. Then, in addition to the energy, the z component of the phonon
wavevector must also be conserved in the scattering event. This results in the phonon scattering
onto a circle in k space, and when summing over all possible final state wavevectors the density
of accessible phonon states is effectively that of a system with two real spatial dimensions, written
as g2d. At the same time, the matrix element of the perturbation reduces to an integral over the
coordinates perpendicular to the defect, x and y, and since this is now a two-dimensional integral,
we write it as M2d. Finally, the density of line defects n2d is an areal density, or a number per unit
area with dimensions (length)−2.

It is easy to see that the same reasoning applies to planar (n̄ = 1) and point (n̄ = 3) defects. All
three cases are illustrated in Figure 2.4 where the scattering diagram is shown on top (analogous to
an Ewald sphere) and the corresponding density of final states, gn̄d, is given on the bottom which
for acoustic phonons obeys the following relation,

gn̄d ∝ ωn̄−1 . (2.30)

A phonon interacting with a point defect scatters onto a shell in k space, a phonon interacting with
a line defect scatters onto a circle, and one interacting with a planar defect scatters onto two states
(forward and backward scattering) on a line in k space.

Our objective in writing the rate as a product of nn̄d, gn̄d, and |Mn̄d|2, is to highlight those aspects
of the answer that are most important for practical purposes. It is useful to refer to the quantities
gn̄d and |Mn̄d|2 as the ‘phase-space’ and ‘matrix-element’ contributions, respectively. It may also
be useful to examine Eq. 2.27 by simple dimensional analysis. Denoting the dimensions of any
quantity X by [X], we have,

[nn̄d] =
1

(length)n̄
, [gn̄d] =

time

(length)n̄
,
[
|Mn̄d|2

]
=

(length)2n̄

(time)2
, (2.31)

and Γ(k) correctly has dimensions of (time)−1. It is important to note that, while the isotropic
approximation is implied in Figure 2.4, where the constant energy surface is represented as the shell
of perfect sphere, these dimensionality and phase space arguments hold even when anisotropy in
the phonon dispersion is considered.
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Figure 2.4: Phonon scattering diagrams for defects with different dimensionality. a) A phonon scattered
elastically by a point defect scatters into the 3d phonon density of states (pDOS). b) A phonon scattered
by a linear defect (scattering potential, V (x, y)) conserves phonon momentum in the z -direction and thus
scatters into the 2d pDOS, contributing ω to the phonon scattering rate. c) A phonon scattered by planar
defect (V (x)) conserves phonon momentum within the defect plane (yz -plane) and scatters into the 1d pDOS
which is ω-independent. vg and vp are the phonon group and phase velocities. The bottom panel shows
this dimensionality argument for the ω power law applied to the scattering rate due to mass fluctuation
scattering.

Mass contrast scattering

Now that we have established the kinematic and phase space effects that arise from considering a
scattering potentials dimensionality, we consider the nature of the scattering potential itself. It is
instructive to first consider the effect of a change in atomic mass. By examining the two terms in H
(Eq. 2.10), it can be seen that a change in mass will perturb the phonon states through the lattice
kinetic energy, T (Eq. 2.11). A change in atomic mass locally changes the cyrstals kinetic energy.
Later we will consider changes in the interatomic bond strength which will change the cyrstals
potential energy U . Within the formalism provided in Appendix G.2, the scattering potential due
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to a change in atomic mass at point r in a crystal is

V (r, ω) =
1

2

(
∆M

M

)
~ω V0δ(r). (2.32)

This describes the scattering potential due to mass difference of a point defect or isotope, and is
shown graphically in Figure 2.4a. δ(r) is the three-dimensional δ-function and V0 is the volume
that the mass fluctuation occupies5. Care must be taken to ensure that V0 and the mass fluctuation
parameter ∆M/M are defined consistently. One theoretically consistent method is to define V0 as
the volume of the primitive unit cell (V0 = VPUC, equation A.0.1), and ∆M = Mdef −M where
Mdef is the mass of a unit cell containing the defect, and M is the average mass of all unit cells in
the crystal.

The Fourier transform of Eq. 2.32 is trivial given the presence of δ(r), and with Eq. G.2.24 we can
define the matrix element contribution to τ−1 as

|M3d|2 =
V 2

0 π

2

(
∆M

M

)2

ω2. (2.33)

This, combined with the phase space contribution g3d ∝ ω2, gives the familiar τ−1 ∝ ω4 dependence,
which is often referred to as Rayleigh scattering. The resulting expression, using Eqs. G.2.25, 2.33,
and G.2.23 is

τ(ω)−1 =
n3dV

2
0

4πvgv2
p

(
∆M

M

)2

ω4. (2.34)

This is identical to the formula provided by Klemens [30], and the analytical expression provided
by Tamura (Eq. 23 of [31]).

Now suppose the mass fluctuation is arranged as a line through the crystal at x = y = 0 (Figure
2.4b) rather than localized at a point. Klemens proposed that the dislocation core could be modeled
as a line of vacancy defects. For such a case we can define the scattering potential

V (x, y, ω) =
1

2

(
∆M

M

)
~ωA0δ(x)δ(y). (2.35)

A0 is the cross-sectional area the line defect occupies. Using the primitive cell based convention
above, one could define A0 = V

2/3
PUC. The matrix element contribution to τ−1 for this case is

|M2d|2 =
A2

0π

2

(
∆M

M

)2

ω2 sin(θ)2 , (2.36)

5Recall that δ(r) has units of 1/(volume), so the quantity V0δ(r) is unitless. V therefore has the correct units of
energy.
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which along with the phase space contribution, g2d ∝ ω (Eq. G.2.14), gives

τ(k)−1 =
n2dA

2
0

4vgvp

(
∆M

M

)2

ω3 sin(θ)2 . (2.37)

Note that for this case τ−1 depends on the direction of the incident phonon rather than just the
frequency, as was the case for a point defect scattering. This equation is equivalent to that given by
Klemens except for a numerical factor6. Once we choose which component of κph,ij we are interested
in, the appropriate τ(ω) for use in Eq. 2.22 can be defined (Section G.3). If we are interested in
the direction perpendicular to the linear defect, than using Eqs. 2.37 and G.3.2, it can be found
that τ(ω)−1 = (2/3)τ(k)−1.

Now imagine a planar defect, where on the atoms lying on the plane at x = 0 are a different mass,
Figure 2.4c. In a similar way we can define the scattering potential as

V (x, ω) =
1

2

(
∆M

M

)
~ω L0δ(x). (2.38)

Following a similar procedure, we can find |M1d|2 (Eq. G.2.33). This along with g1d, which is
independent of frequency (Eq. G.2.30), gives

τ(k)−1 =
n1dL

2
0

2vg

(
∆M

M

)2

ω2 k
2
x

k2
. (2.39)

If we are again interested in κph,xx, we find τ(ω)−1 = (1/3)τ(k)−1. Eq. 2.39 has the same form
as the expression given by Turk and Klemens (Eq. 19 of [32]), which was derived for platelet-like
coherent precipitates.

The treatment for mass difference scattering given above demonstrates how defect dimensionality
effects the phonon scattering rate. In each case the matrix element contribution contributes ω2 to
τ−1. This stems from the fact that the mass fluctuations considered are localized in spatial extent
and are therefore well described using δ-functions. This is illustrated and tabulated in the top
portion of Figure 2.4. When the dimensionality of the defect is changed from a point, to a line,
to a plane, the phase space into which the phonon can scatter is changed. This changes the phase
space contribution to τ−1, which follows the expression provided in Eq. 2.30, and is tabulated in
the bottom portion of Figure 2.4. These phase space effects hold for all types of phonon-defect
scattering. However, we will find in the next section that when the scattering potential is a more

6Eq. 2.37 is a factor of 3 smaller than Klemens’ expression, Eq. 65 of [30] (which is given for θ = π/2). This may
be due to differences in assumptions regarding mode conversion when computing the scattering phase space. If one
assumes a phonon can scattering into any three of the acoustic branches, than the phase space contribution would
be 3g2d. Since in full detail the matrix element will contain a dot product between the incident phonon eigenvector
(polarization vector), and the scattered phonon eigenvector, we use g2d.
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complex function in real space, the matrix element contribution is less straightforward.

Strain and rotation scattering

Atomic displacement fields, which are induced by crystal defects, can also scattering phonons. To
describe this mathematically we first define a displacement vector field, ui(r), which defines the
displacement of an atom at location r from its equilibrium position. There are several ways in
which one can theoretically compute the influence of ui(r) on phonons. The method which allows
for greatest physical insight starts by reducing the information contained in ui(r) into a symmetric
strain tensor [33]

εij(r) =
1

2

(
dui(r)

dxj
+
duj(r)

dxi

)
= εji(r) , (2.40)

and an anti-symmetric rotation tensor

Rij(r) =
1

2

(
dui(r)

dxj
− duj(r)

dxi

)
= −Rji(r) . (2.41)

Imagine an infinitesimal unit volume of a material at position r, in the shape of a cube. One can
interpret εij(r) as describing the change in the shape of this cube, and Rij(r) as describing its
rotation. R12 gives the angle of rotation about the x3 axis (in radians), R13 gives rotation about
x2 and so on. Additionally, it is evident that if εij and Rij are known, one can obtain ui by

ui = (u0)i +Rijxj + εijxj , (2.42)

where (u0)i is a rigid body translation vector, which corresponds to someone picking up and moving
the sample. For theoretical treatments we set (u0)i = 0.

In order to define how this atomic displacement field changes the phonon energy, and in turn induces
scattering, we define the generalized, mode specific, Grüneisen tensor (Eq. 11.75 of Wallace [34])

γij(ks) = −d lnω(ks)

dεij
. (2.43)

This definition provides a scalar value for every mode ks, describing how sensitive it is to the ij
component of the strain tensor, εij . Therefore it captures how anharmonic a crystal is to hydrostatic
and shear (deviatoric) strain. One can conceptualize hydrostatic strain as a change in volume of a
crystal and shear strain as a change in its shape (at constant volume). Consequentially, shear strain
breaks crystal symmetry. A more commonly used metric for describing crystal anharmonicity is the
hydrostatic mode specific Grüneisen parameter, commonly referred to as simply the mode specific
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Grüneisen parameter

γ(ks) = γii(ks) = −d lnω(ks)

d lnV
. (2.44)

The relationship between Eq. 2.43 and 2.44 is made by recalling that the change in volume of
a material is given by the trace of the strain tensor, εii. An overview and derivation of several
common Grüneisen parameters and tensors is given in Appendix F. Using Eq. 2.43 one can define
a scattering potential due to an internal strain field (analogous to Eq. 6.4.2 of Ziman [29])

V (r,ks) = ~ω(ks)γij(ks)εij(r). (2.45)

By inserting Eq. 2.43 into 2.45, one can see that it reduces to simply ~ dω or the change in phonon
energy due to the strain field.

Phonon-dislocation strain scattering

Phonon dislocation strain scattering is formally treated in Sections 3.1.1 and G.4.3, and the final
expression obtained within this theoretical framework can be found in Eq. G.4.22. Here we highlight
the main points needed for a conceptual understanding.

Perhaps the most characteristic features of dislocations is their long range strain field which falls
off as 1/r when moving away from a dislocation core located at r = 0 (with r = (x2 + y2)1/2 for
a dislocation pointing in the z-direction). This results in a scattering potential which also falls off
as 1/r, rather than the simple δ-functions we had for mass difference scattering above. The 2D
Fourier transform of 1/r is 1/q (with q = (q2

x + q2
y)

1/2, Eq. G.5.3). By recalling that q ∝ k and
k = ω/vp, one can see that the Fourier transform of the strain field from a dislocation will produce
a 1/ω dependence. This 1/ω dependence cancels with the ω dependence in V and results in an
ω-independent matrix element contribution, |M2d|2. We can show this in a simple way by writing
the scattering potential in a concise form, neglecting angular dependencies and coefficients for the
time being

V (r) = ~ωγ
(

1

r

)
, (2.46)

M2d = Ṽ (r) ∝ ~ωγ
(

1

k

)
= ~ωγ

(vp

ω

)
= ~γvp. (2.47)

This Fourier analysis shows that we do not expect any explicit ω dependence in M2d (Section 6.4
of Ziman [29]). Therefore, the classic τ−1 = n2d g2d |M2d|2 ∝ ω for dislocation strain scattering
stems from the phase space contribution g2d ∝ ω, and a ω independent matrix element contribution
|M2d|2 ∝ ω0 [35, 36, 30]. From an analytical perspective, if there is a frequency dependence in
the matrix element of dislocation strain scattering observed computationally, we would expect it to



38

come from an ω-dependence in γ or vp, or from the fact that the 1/r strain field was not faithfully
captured.

Acoustic mismatch scattering

Now let us consider phonon scattering due to a change in the elastic properties in the material.
This case can be solved within the formalism of classical wave mechanics, and has been termed
the acoustic mismatch model (AMM). Here, we provide a quantum mechanical derivation which
achieves an essentially analogous result to the classical treatment (equivalent at ∆vs/vs < 0.2 where
vs is the speed of sound). Crystals have anisotropic elastic properties, speeds of sound, phonon
dispersion relations even in cubic systems, such that acoustic mismatch can arise due to adjacent
grains of the same material having different orientations, i.e. the rotation of a crystal lattice across
a grain boundary (GB). Alternatively, acoustic mismatch can occur at the interface between two
materials with different elastic properties, even if they are aligned in the same crystallographic
orientation.

We can describe the change in phonon energy across a grain boundary in the yz plane at at x = 0

due to acoustic mismatch in a general way

V (x) = ~∆ωΘ(x) = ~k∆vp Θ(x) (2.48)

where ∆ω is the change in phonon frequency of a phonon with wavevector k. ∆vp is its phase
velocity and Θ(x) is a step function defined in Eq. G.5.4. To compute the scattering rate, τ−1 for
this planar perturbation we require the 1d matrix element

M1d = Ṽ (x) = −~k∆vp

(
i

qx

)
=

~∆vp

2

(
i

sin θ cosφ

)
(2.49)

recalling that only specular back scattering contributes to the scattering rate (k′x = −kx, k′y = ky,
and k′z = kz, such that qx = −2kx = −2k sin θ cosφ). By following the procedure outlined in
Appendix G.2.3, we find

τ(ω)−1 =
2vs

3Lx

(
∆vs

vs

)2

. (2.50)

Note that we have made the Debye approximation (vs = vg = vp) for comparison with the analytical
treatment of the classical AMM, which is given in the next section. As can be seen from Eq. 2.50,
there is no explicit frequency dependence from this planar, step-function type perturbation.
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Models for the thermal conductivity of systems with interfaces

There are several ways to model the phonon thermal conductivity κph of systems containing in-
terfaces. Here we will examine the two most common. In both treatments, each frequency ω is
considered an independent conduction channel. In Appendix H we provide a mode (ks) specific
treatment. The thermal conductivity of the, bulk, interface free system is given by Eq. 2.22 with
only phonon-phonon scattering τ(ω) = τpp(ω). Here we will focus on the thermal conductivity of
one channel with frequency ω

κbulk(ω) =
1

3
C(ω)vg(ω)2τpp(ω), (2.51)

and its corresponding thermal resistivity κbulk(ω)−1.

The first method we examine is based on the Landauer method, which simply computes the conduc-
tance of particles encountering an interface when each particle is assigned a transmissivity t(ω) [37].
When the Landauer approach is applied to phonons, each channel carries a heat capacity C(ω), at
a speed equal the group velocity vg(ω). Within this formulation the thermal boundary conductance
is given by

hB =

ˆ
hB(ω)dω , (2.52)

hB(ω) =
1

4
C(ω)vg(ω)

t(ω)

1− t(ω)
. (2.53)

Since hB is the thermal boundary conductance, h−1
B is the thermal boundary resistance. Addition-

ally, it will be convenient to define the thermal boundary resistivity (Lz hB(ω))−1 where Lz is the
linear spacing between boundaries as shown in Figure 2.5. Since the bulk material and interfaces
are in series in this model, the total thermal resistivity of the conduction channel ω is given by the
sum of the resistivities

κph(ω)−1 = κbulk(ω)−1 + (Lz hB(ω))−1. (2.54)

If the spectral properties, or mode specific properties of the thermal boundary resistance and bulk
thermal conductivity are neglected one can write the total thermal conductivity simply as

κ−1
ph = κ−1

bulk + (Lz hB)−1. (2.55)

The second method is to consider the interface as introducing an additional scattering mechanism
which can reduce the phonon lifetime. The relaxation time due to this scattering mechanism can
be calculated using the scattering theory presented in Section 2.3.1. The total thermal resistivity
is calculated as the sum of the resistivity due to phonon-phonon scattering and the resistivity due
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Figure 2.5: a) A schematic illustration of two common models used to describe heat conduction in materials
with interfaces. The vertical can be interpreted as temperature of a specific conduction channel, which can
be either a specific phonon mode ks or frequency ω depending on the level of detail of the model. The blue
line depicts the Landauer based model where a thermal boundary resistance arising from the conduction
channel having a interfacial transmission probability t(ks) > 1 (or t(ω) > 0), induces an instantaneous drop
in temperature. The red line depicts a model based on phonon scattering theory and Matthiessen’s rule,
where each scattering mechanism contributes a scattering rate (τ(ks)−1 or τ(ω)−1) and thermal resistance
to the conduction channel. b) A comparison between the transmissivity calculated using classical acoustic
mismatch (AMM) theory and quantum perturbation theory (Eq. 2.50 and 2.59). The two differ no more
than 5% across the entire range.

to boundary scattering, κB = C(ω)vg(ω)2τB(ω)/3

κph(ω)−1 = κbulk(ω)−1 + κB(ω)−1, (2.56)

or equivalently

κph(ω) =
1

3
C(ω)vg(ω)2τ(ω), (2.57)

with τ(ω) having the familiar form (Eq. 2.26)

τ(ω)−1 = τph(ω)−1 + τB(ω)−1. (2.58)

Since this relaxation time is derived by considering perturbations to the crystal Hamiltonian, this
method has the capacity for capturing materials physics which may be missed by the Landauer
approach. In the perturbation theory approach, the effects of defect dimensionality and spatial
extent of the scattering potential, as well as the physical origin of the phonon scattering are naturally
built into the theoretical framework (e.g. anharmonicity, elastic anisotropy, local changes in atomic
mass or interatomic force constants etc.).
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However, the two approaches can be related by equating Eqs. 2.55 and 2.56

t(ω) =
τB(ω)

3
4

Lz
vg(ω) + τB(ω)

. (2.59)

Using this equation with the acoustic mismatch perturbation theory given in Eq. 2.50, we obtain

tPert =
1

1
2

(
∆vs
vs

)2
+ 1

(2.60)

In the classical AMM theory, the transmissivity is given by [38]

tAMM =
4Z1Z2

(Z1 + Z2)2
(2.61)

where Zi = ρivs,i is the acoustic impedance of side i, and ρi is its mass density. For direct comparison
with the perturbation theory approach derived here we set vs,1 = vs + ∆vs/2, vs,2 = vs − ∆vs/2,
and ρ1 = ρ2. The two are compared in Figure 2.5b, where Eq. 2.50 is converted to a transmissivity
using Eq. 2.59. The two are identical at ∆v/v > 0.2 and differ no more than 5% across the entire
range.
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Chapter 3

Phonons and interfaces

3.1 Diffraction and dimensionality crossover1

Thermal resistance at interfaces and grain boundaries is important in a range of fields from micro-
electronics to energy materials. Standard models treat interfaces as structureless even though at
the nanoscale they are often better described as arrays of linear defects. Here, we examine several
characteristics of heat transport that arise when considering such a structure at the interface. When
heat carrying phonons scatter off linear defect arrays, diffraction of phonons occurs. Furthermore, a
dimensionality crossover is observed in diffusive transport. Phonons transition from seeing a struc-
tureless planar defect when their wavelength is longer than the defect spacing, λ & D, to seeing
the interface as a collection of independently scattering linear defects when λ . D. By applying
this theory to grain boundary strain-field scattering, we show that this dimensionality crossover can
explain the frequency dependence of grain boundary scattering and transmissivity, which results in
the T 2 temperature dependence observed in the low-T thermal conductivity of poly/nanocrystalline
materials.

The current standard models for describing phonon-interface interactions are the acoustic and diffuse
mismatch models (AMM and DMM)[40], which define the interface as a structureless planar defect
where the transmissivity or scattering rate is determined by the bulk properties on either side of
the interface. Specifically, within the AMM phonons interact with interfaces through an acoustic
analogue to the refraction of light, where a change in elastic properties (i.e. acoustic impedance)
determines the probability that an incident phonon will reflect or transmit across the interface
[41, 38]. In the DMM every phonon scatters randomly or diffusely at the interface and the probability
of transmission is determined by the density of phonon states on either side of the boundary [38].
The commonly used gray model also assumes diffuse scattering and simply limits the phonon mean
free path (MFP) to the average grain size of a polycrystal. This is essentially an extension of the

1The content in this section was published by Hanus, Garg, and Snyder in Ref. [39].
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Figure 3.1: The low temperature lattice thermal conductivity (κL) of polycrystalline samples compared
to that of single crystals. In polycrystals where the phonon scattering is dominated by grain boundary
interactions, κph scales as T 2. In single crystals where scattering is dominated by phonon sample surface
interactions, T 3 behavior is observed. The κph and T values are normalized for comparison. Un-normalized
data are shown in Figure 3.7.

Casmir limit which was initially proposed for single crystals where the MFP was limited to the size
of the sample [42]. Each of these models predicts frequency independent scattering of phonons at low
temperatures, and thus predicts a T 3 temperature dependence in the phonon thermal conductivity,
κph, stemming from the temperature dependence of the heat capacity.

In contrast, studies of the low-T κph of polycrystals provided by Wang et al. [43], Watari et al. [44],
and Berman [45] show a κph ∝ T 2 temperature dependence (Figure 3.1) which is characteristic of a
grain boundary (GB) scattering rate that is linear in frequency, τ−1 ∝ ω. An empirical expression
for the spectral transmissivity function of phonons at GBs with the form t(ω) = (1 + αω/ωmax)−1,
(where α is a constant on the order of unity, and ωmax is the maximum phonon frequency), was
presented to account for the observed κph ∝ T 2 (τ−1 ∝ ω) behavior in polycrystals [43] and has been
used in a number of computational and experimental studies [46, 47, 48]. Additionally, Hua et al.
have recently measured the spectral phonon transmissivity of an Al-Si interface and experimentally
showed that the interface of dissimilar materials can have a transmissivity function which is ω-
independent at the lowest frequencies and decrease above some critical crossover frequency [49].
Providing mechanistic explanations for these phenomena is a key step in understanding phonon-
interface interactions at a fundamental level.

The frequency independence of the phonon scattering in the AMM, DMM, and grey models stems (in
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part) from their definition of the interface as a structureless planar defect. However, real interfaces
between similar (GBs) and dissimilar (phase boundaries) materials are not structureless at the
nanoscale but are better described as arrays of linear defects of various types (Refs. [50, 51, 52, 53,
54, 55] and Section 2.3 of [56]). In fact, prevailing models of GB defect energies and structure have
essentially extended the classic Read-Shockley model [55], which defines the GB structure as an array
of lattice dislocations, to many GB types (including GBs at high angle) despite the complexity and
variety of GB structures [57, 58, 59]. Furthermore, interfaces between dissimilar materials are known
to accommodate the mismatch in lattice parameter by the formation of arrays of misfit dislocations
spaced periodically (e.g. GaAs heterostructures [60, 61]). X-Ray and electron diffraction peaks
arising from the periodic dislocation structures in semi-coherent phase boundaries and GBs have
been experimentally observed and can be used to study interfacial structure [62, 63]. We note that
the wavelength of X-Rays and electrons used in these studies are comparable to the wavelengths of
heat carrying phonons. The interface between two crystalline materials with structural periodicity
will tend to have structural periodicity itself. We propose that the description of phonon-interface
scattering should be grounded in a definition which contains this structural information.

Phonon diffraction conditions arising from periodically spaced dislocations have been discussed pre-
viously by authors such as Klemens [30], Carruthers [36], and are formally considered by Omini and
Sparavigna [64]. Previous works, however, have not examined the dimensionality crossover effects
that diffraction engenders. We have previously suggested that dislocation strain may dominate
phonon-GB scattering processes [65]. Here we develop a rigorous theory for this and identify several
interesting phenomena that arise from treating the GB dislocation arrays collectively. This study
focuses only on phonon-interface interactions, and does not consider electron-phonon interactions
which can be important at metal semiconductor interfaces.

To that end, we first discuss the general effect of defect dimensionality on phonon scattering in
order to establish concepts that will be used to interpret the theory that follows. We then derive
a general formula to calculate the phonon lifetime due to an array of linear defects, where by
analyzing the conservation laws and kinematics of this system, diffraction conditions and a crossover
in defect dimensionality can be observed. Next, this general formula is applied to the specific case
of phonon-GB strain field scattering by defining the linear defects as the strain field from edge
dislocations which collectively define a symmetric tilt grain boundary. A simple, semi-empirical
expression is provided as an excellent approximation of the full analytical theory which embodies
the crossover in defect dimensionality observed in this calculation. Finally, this scattering theory
is applied to standard phonon transport models, where the phonon-GB strain field scattering and
inherent dimensionality crossover provide a mechanistic explanation for the experimentally observed
κph ∝ T 2 of polycrystalline and nanocrystalline materials [43, 44, 45]. This power law analysis
provides evidence that the dominate phonon-GB scattering mechanism is through GB strain fields.
It may also provide an explanation for crossover effects in the frequency dependence of phonon
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transmissivity at phase boundary interfaces [49].

3.1.1 Scattering from an infinite array of linear defects

The derivation and analysis below will build on the concepts presented in Section 2.3.1. Special
attention should be given to the effects of defect dimensionality on phonon scattering which are
shown in Figure 2.4 and derived in Appendix G.2. The case considered here is the phonon scattering
from an interface described by array of linear defects. In general, the results can be conceptualized
as a phonon scattering process which transitions from scattering off a 2D defect (Figure 2.4c) to a
collection 1D defects (Figure 2.4b), with decreasing wavelength and increasing frequency.

Kinematics & diffraction conditions

Due to the wavelike nature of phonons, their interaction with periodic perturbations leads to diffrac-
tion conditions which depend on the wavelength of the phonon and the spacing of the perturbations.
We now consider the case of linear defects parallel to the z axis periodically spaced by a distance
D. The x and y coordinates of the defects are

x = 0, y = jD (j = 0,±1,±2, . . .) . (3.1)

Defect arrays fitting this definition describe a variety of interfaces, such as grain boundaries and
semi-coherent phase boundaries which can be defined as arrays of linear dislocations [57, 58, 66].

Scattering from such an array will conserve phonon energy and momentum in the z-direction, kz.
In addition, diffraction conditions will be observed from the periodic structure in the y direction,
such that ky will change by integer multiples of 2π/D. This in turn means that for any incident
phonon wavevector k, the scattered phonon wave vector k′ will take only a discrete set of values.
Then, with the definition

qm =
2π

D
m , (3.2)

we can solve for the final phonon states by casting the constraints on k′ as

k′ = k, k′z = kz, k′y = ky − qm (m = integer) . (3.3)

The condition k′ = k is equivalent to k′2 = k2, or, k′2x = k2
x + k2

y − k′2y , which leads to

k′x = k′x,m± ≡ ±(k2
x + 2kyqm − q2

m)1/2 . (3.4)

However, k′x must be real, so only a limited number of values of m are allowed for any given k, i.e.
only a finite number of final phonon states (k′) exist.
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Figure 3.2: Kinematics and conservation laws leading to diffraction conditions and dimensionality crossover.
a) An illustration of the array of linear defects which scatters a phonon k into a state k′. b) Scattering
from linear defects requires the conservation of momentum in the kz direction, kz = k′z. This results in a
scattering circle that lies parallel to the xy-plane. c) Because of further conservation laws arising from the
periodic nature of the scattering potential (given in Eq. 3.3 in the text), only intersections of this circle with
the dashed lines are valid. For small |k|, only the m = 0 line will give valid solutions (and a phonon density
of states (pDOS), g1d). When |k| is large, the entire circle is essentially accessible (pDOS g2d).

Figure 3.2 provides a visualization of the conservation laws given in Eq. 3.3. Figure 3.2b illustrates
the conservation of kz, meaning the incident phonon will scatter onto a circle in k space. Figure 3.2c
shows this scattering circle. Due to the conservation of ky (as well as the conservation of energy,
k′ = k), only intersections of this scattering circle with the dashed lines give valid final wavevectors.
As |k| increases (i.e. phonon frequency increases), the size of the circle increases, while the spacing
between the dashed lines is fixed. When |k| becomes large enough such that another term in the
sum over m becomes available, a diffraction event is encountered. These diffraction peaks will be
observed in our calculation of GB strain field scattering.

Dimensionality crossover

When |k| is smaller than π/D, the only allowed solution is m = 0, for which k′y = ky, k′z = kz, and
k′x = ±kx. In other words, only forward scattering and specular reflection are allowed, and only the
latter contributes to τ−1. This is the solution found by Klemens when solving for phonon scattering
at GBs (Eq. 73 of [30]). In this case, the interface behaves like a structureless planar defect, and
ky is conserved just as kz, making the final pDOS one-dimensional (g1d). When |k| is much larger
than 2π/D, on the other hand, much of the scattering circle is accessible and there is effectively no
constraint on k′y. Now the interface behaves like a collection of independently scattering line defects,
and the density of final phonon states is two-dimensional (g2d). The transition between these two
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limits gives rise to a ‘dimensionality crossover’ and has important implications for the lifetime and
thermal conductivity.

We show in Appendix G.4.1 that the expression for the phonon scattering rate from an array of
linear defects takes the form,

Γ(k) =
n1d

~2vgD2

∑

m,σ=±
|Ṽ1(qx,mσ,−qm)|2(1− k̂ · k̂′)J(k,m), (3.5)

where qx,mσ = k′x,mσ − kx; Ṽ1 is the Fourier transform of the scattering potential associated with
one line defect at (x, y) = (0, 0), i.e.,

Ṽ1(qx, qy) =

¨
dx dy V1(x, y)e−i(qxx+qyy) ; (3.6)

and J(k,m) = k(k2
x + 2kyqm − q2

m)−1/2 is a Jacobian or volume rescaling factor associated with
re-expressing the conservation laws (Eq. 3.3) in terms of qx, qy, and qz. The sum in Eq. 3.5 is over
accessible final wavevectors as shown in Figure 3.2c, and each term in the sum corresponds to a
separate diffraction peak.

3.1.2 Grain boundary strain and rotation field scattering

In this section we consider the specific problem of scattering from the strain field of grain boundaries,
using the concepts illustrated in Figures 2.4 and 3.2. An edge dislocation array (Burger’s vector bx̂)
with the geometry shown in Figure 3.3a is considered. This array describes a symmetric tilt grain
boundary (STGB) with a misorientation angle θGB such that,

2 sin

(
θGB

2

)
=

b

D
. (3.7)

This is the same microscopic picture behind the extended Read-Shockley model which is used to
describe the GB energy of many types of GBs, and has been extended to GBs at high angle [57, 59].
Figure 3.3a schematically illustrates this interfacial defect next to its strain fields which are shown
in Figure 3.3b.

The displacement field u(r) is then independent of z, and the strain state can be formulated in terms
of the quantities ε∆ = εii, and εS = ε12, which describe the dilation and shear strain. The rotation
of the crystal orientation across the GB is represented by εR = 2R12 [58]. Each type of deformation
constitutes an independent scattering channel, which contributes additively to the scattering rate.

For the perturbation V due to this strain and rotation, we employ the same form as that used by
Ziman (Section 6.4 of [29]). We will take the perturbation from the array of dislocations as the
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Figure 3.3: A periodic array of edge dislocations describing the structure of a symmetric tilt grain boundary.
a) Schematic illustration of an array of edge dislocations (⊥) periodically spaced by D with Burger’s vector
bx̂ forming a grain boundary of angle θGB. Careful examination of the atoms highlighted in red reveals
that they are displaced. b) Grain boundary strain maps of hydrostatic strain ε∆, pure shear strain εS, and
rotation εR, calculated via Eq. 3.11 with parameters given in Table 3.1. Scale bar shows the percent strain
(10−2).

sum of contributions from each individual dislocation for each deformation type. More specifically,
denoting the contribution from a single dislocation along the line x = y = 0 by a subscript ‘1’ as in
Eq. 3.5,

V1,a = ~ωγaεa(x, y), (a = ∆,S,R), (3.8)

so that the total perturbation from each type of deformation is

Va = ~ωγa
∞∑

n=−∞
εa(x, y − nD). (3.9)

Here, ω is the phonon angular frequency, and γa is a coefficient relating the type of strain or rotation
a to a change in phonon energy. The change in phonon energy with strain, γ∆ and γS, is defined
through the generalized Grüneisen parameter (Eq. 11.75 of [34]). The change in phonon energy
with a rotation of the lattice, γR, is determined by the anisotropy of the phonon dispersion and
elastic properties.

In this work, we use a single averaged Grüneisen parameter, γ = γ∆ = γS = γR instead a full
phonon-mode and deformation specific representation, which is in line with historical treatments
of Ziman [29], Klemens [30], and Carruthers [36], and more recent ones by Meng et al. [67], for
example.

With this perturbation defined, we can now use the formalism developed in Section G.4 and Eq.
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3.5 to calculate the phonon lifetime. It can be seen from Eq. 3.5 that this will require the Fourier
transform of the single dislocation perturbation which can be found for each deformation type to
equal

Ṽ1,a = ~ωγε̃a(q) . (3.10)

The explicit forms of these deformations are (Section 3-4 of [58])

ε∆ =
−b
2π

(1− 2ν)

(1− ν)

y

(x2 + y2)
, εS =

b

4π(1− ν)

x(x2 − y2)

(x2 + y2)2
, εR =

b

π

x

(x2 + y2)
, (3.11)

and thus their Fourier transforms are given by

ε̃∆(q) = ib
(1− 2ν)

(1− ν)

qy
q2
, ε̃S(q) = −ib 1

(1− ν)

qxq
2
y

q4
, ε̃R(q) = −2ib

qx
q2
, (3.12)

where b is the Burgers vector for one dislocation, and ν is the Poisson ratio. Note that because
all forms of ε̃a scale as 1/q , and since q (the momentum transfer) scales as k = ω/vp, the ω
dependence cancels in Ṽ1,a from Eq. 3.10 (at low ω). This results in a matrix-element contribution
that is essentially ω independent for phonon-strain field scattering. When the three channels are
added together, we get

Γgbs(k) =
n1dγ

2

vgD2

∑

m,σ

ω2
k

[
|ε̃∆|2 + |ε̃S|2 + |ε̃R|2

]
(1− k̂ · k̂′)J(k,m). (3.13)

This expression will be averaged over incident phonon direction (Eq. G.3.2) and be applied to Eq.
2.22 to examine its implications on κph.

Rotation and specular reflection

It leads to greater physical insight to examine the m = 0 (specular) term in the sum in (3.13)
separately from the m 6= 0 (nonspecular) terms. For the m = 0 term, qy = 0, and we see from Eq.
3.12 that ε̃∆ = ε̃S = 0, so only rotation is nonzero (see the inset of Figure 3.4). Thus, for k < π/D,
only specular reflection survives and only rotational deformation contributes to scattering. This
deformation arises because the crystals on the two sides of the grain boundary are rotated with
respect to each other, and the deformation is long-ranged for the same reason (see εR in Figure
3.3b). The coupling coefficient for rotation is determined by the anisotropy of the crystal and is
only a function of the second order force constants [68]. Thus, the m = 0 term is analogous to the
AMM (Section 2.3.1), and γR should be interpreted as an anisotropy factor. In Appendix G.4.2 the
AMM is derived by analytically solving Eq. 3.13 in the low-frequency limit.
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Figure 3.4: Phonon diffraction peaks arising from the periodic nature of a grain boundary strain field. The
scattering rate is calculated from Eq. 3.13 for a phonon at normal incidence (k‖x̂) at different magnitudes
of the phonon wavevector, k = |k|. Scattering at low k is non-zero as shown in the inset, and diffraction
peaks are observed as singularities at 2πm/D, where m is an integer.

Phonon diffraction from GB strain fields

Scattering of wave-like phonons from the GB strain fields shown in Figure 3.3 with material values
of Si (given in Table 3.1 and 3.2) are calculated using Eq. 3.13 and the results for phonons at
normal incidence (k‖x̂) are shown in Figure 3.4. Diffraction events for normal incidence occur when
k = 2πm/D where m is an integer and these events appear as singularities in Γgbs. The exact
position of the diffraction peaks depends on the phonon angle of incidence. This diffraction may
be observable for ballistic phonons if the periodic structure of the interface is maintained for a
length scale longer than the wavelengths of the phonons considered. In a real system where the GB
structure is not infinitely periodic, one would expect these diffraction peaks to broaden in a manner
analogous to Scherrer-broadening of X-Ray diffraction peaks due to particle size effects [69].

Dimensionality crossover in diffuse heat conduction

For diffuse (bulk) thermal conduction, a dimensionality crossover is observed as phonons transition
from seeing the GB as a 2d plane, to a collection of individually scattering linear defects. In bulk
thermal conduction, phonons transport diffusively, arriving at the interface in random directions
rather than one specific angle of incidence. Thus, the diffraction observed for one specific k (Figure
3.4) is washed out when all the possible directions of incidence are included. We define τ(ω) in Eq.
G.3.2 as a lifetime averaged over incident direction which can be directly applied to Eq. 2.22. By
setting Γ(k) to Γgbs(k), we obtain a directionally averaged GB strain scattering rate τgbs(ω)−1 which
is shown in Figure 3.5. This can be used to describe the ω-dependence of phonon-GB scattering in
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diffuse heat conduction, and thus be used to interpret the temperature dependence of the lattice
thermal conductivity of bulk polycrystalline and nanocrystalline materials.

The change in slope, or crossover in ω-dependence, observed in Figure 3.5 is an important result of
this study. When the phonon wavelength is larger than the microscopic structure of a GB (D in this
work), the phonon will see it as planar defect and the phase space contribution to the phonon lifetime
will be ω-independent (g1d). When the wavelength is smaller than the microscopic structure of the
GB, the phonon lifetime will obtain ω-dependence through the phase space contribution (g2d). In the
case shown above for GB strain field scattering, the matrix-element contribution is ω-independent
so the ω-dependence of the phonon lifetime comes exclusively from phase-space contributions. We
note that, while the diffraction conditions shown in Figure 3.4 require structural periodicity of the
GB structure, the dimensionality crossover discussed here is purely a phase-space effect and is thus
expected to be preserved even if perfect periodicity is not maintained in a real GB structure.

By recognizing the dimensionality crossover behavior, the following semi-empirical expression can
be inferred through careful analysis2

1

τgbs(ω)
= An1dvsγ

2
R

(
b

D

)2

+B
(n1d

D

)
γ2b2(ω − ω∗)Θ (ω − ω∗) , (3.14)

where
ω∗ =

4πvs

3D
, (3.15)

is the dimensionality crossover frequency (averaged over the incident phonon direction) and Θ(x)

is the Heaviside step function. The best fit of Eq. 3.14 to Eq. 3.13 is obtained with A = 8/3 and
B = 0.93Kν , where

Kν = 1 +
(1− 2ν)2

4(1− ν)2
+

1

32(1− ν)2
, (3.16)

and ν is Poisson’s ratio. Eq. 3.14 provides an excellent approximation (dashed lines in Figure 3.5 and
3.6) for the numerical solution of the full analytical expression in Eq. 3.13 (solid lines). We note that
the first term in Eq. 3.14 is the m = 0 (specular) term in the sum in Eq. 3.13. It is ω-independent
and proportional to the linear density of interfaces n1d, a misorientation factor b/D (Eq. 3.7), and
a coefficient characterizing the crystal anisotropy γR. The second term in Eq. 3.14 contains m 6= 0

(nonspecular) terms and is proportional to the areal density of grain boundary dislocations n1d/D

and the Burger’s vector squared b2, and a coefficient characterizing the anharmonicity of the crystal
γ. These dependencies stem directly from the dimensionality arguments presented in Figure 2.4

2At high frequencies, 1/τ should vary as ω, and at low frequencies it can be rigorously argued that it should be
frequency-independent. Thus a piecewise continuous interpolation formula where the high frequency part turns on
at some crossover value ω∗, is superior to one where the high and low frequency parts are simply added together
or smoothly transition from one to the other. The reason the best fit value for the constant B 6= Kν is that the
frequency-independent term will raise the overall value of 1/τ , so a fit is expected to give B . Kν .
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Figure 3.5: Dimensionality crossover effects observed in phonon-GB strain field scattering in diffuse heat
conduction. a) The vertical dashed line denotes the crossover frequency, below which the phonon scatters off
the GB as a 2d defect (ω independent, τ ∝ ω0), and above which scatters off the grain boundary as an array
of 1d defects (τ ∝ ω−1). D is the linear defect spacing (Figure 3.3a), and θGB can be interpreted as the
magnitude of angular deviation from a special boundary [57]. b) The spectral scattering rate is shown where
the dashed line compares the approximate formula given in the main text (Eq. 3.14) to the exact formula
(solid line). c) Phonon-GB strain field scattering cast in terms of a spectral transmissivity function (Eq.
3.17) shows a frequency independent transmissivity at low-ω and a decrease above the crossover frequency.
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and 3.2. As discussed in ‘Rotation and specular reflection’, the first term in Eq. 3.14 depends only
on rotation, while the second term depends on rotation, hydrostatic, and shear strain. Thus, if
the scattering coefficients of each deformation type (a = ∆, S,R) are treated separately the relative
magnitudes of the first and second term will change and thus the dependence of τ−1

gbs with GB angle
will also change.

The scattering theory presented here characterizes the phonon GB interaction as a phonon lifetime
τ(ω) and is a convenient means to observe dimensionality and phase space effects. In Figure 3.5c
we cast our results into the form of a spectral phonon transmissivity using the expression provided
by Dames and Chen [70], and derived in the text preceding Eq. 2.59

t(ω) =
vgn1dτ(ω)

3
4 + vgn1dτ(ω)

. (3.17)

This demonstrates how the dimensionality crossover of the phonon-interface interaction results in a
transmissivity that is ω-independent at low ω, and decreases above the critical frequency ω∗, which
is a function of the linear defect spacing.

3.1.3 Low-T thermal conductivity of polycrystals

Now, we discuss how GB strain scattering influences thermal transport in polycrystalline materials.
Specific analysis is given for polycrystalline Si, AlN and Al2O3. We use the Callaway model for
phonon thermal conductivity (Eq. 2.22) and modeling procedure given by Wang et al. [43, 71]
wherein the net relaxation rate is given by

τ−1 = τ−1
pp + τ−1

pd + τ−1
gbs . (3.18)

The three contributions are due to phonon-phonon (τpp), intrinsic point defect (τpd) and grain
boundary strain (τgbs) scattering. We take τ−1

pp = C1ω
2Te−C2/T (same form as that given by Slack

[72]), τ−1
pd = C3ω

4, but account for GB scattering in polycrystalline materials using Eq. 3.14. Since
τ−1

pp and τ−1
pd are considered intrinsic to a given crystal system, the coefficients C1, C2, and C3 are

fit to single crystal data (Table 3.1) and fixed for subsequent modeling. The parameters for Si are
the same as those of Wang et al. [43].

In Figure 3.6, we show the temperature dependence of κph that results from the modeling procedure
described above for the specific case of Si. This dependence is shown for various values of D, the GB
dislocation spacing (Figure 3.3a) with the remaining material parameters for Si given in Table 3.2.
The central point of the figure is that depending on D, the T dependence of κph at low temperature
(below the temperature of maximum κph) can vary from T 2 to T 3. At such temperatures the
dominant scattering in this model is from GB strain and therefore, the variation from T 2 to T 3
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Table 3.1: Intrinsic scattering parameters entering τ−1
pp , τ−1

pd , and τ−1
Casimir obtained by fitting to single crystal

data [73, 44, 45]. For each material, parameters are given based on both Debye and Born von Karman (BvK)
phonon dispersions.

Material Parameter Value

Si (Debye, BvK) AlN (Debye, BvK) Al2O3(Debye, BvK)

C1

[
×10−19 s/K

]
2.69, 1.53 [43] 2.2, 1.3 30, 15

C2 [K] 167, 140 [43] 270, 250 350, 320

C3

[
×10−45 s3

]
1.81, 1.69 [43] 0, 0 1, 1

Single crystal size, Lsc [mm] − 6 2.4

stems directly from the dimensionality crossover argument embedded in our semi-empirical formula
for τgbs (Eq. 3.14, Figure 3.5). As GB dislocation spacing decreases, the crossover frequency ω∗

(Eq. 3.15) increases. For reference, the peak in the phonon occupation number at ∼ 50K occurs at
ω/ωD ' 0.2. For the case of D = 1 nm, ω∗/ωD = 0.37, so below 50K most phonons see the GB as a
planar defect with n̄ = 1 (τ independent of ω) resulting in κph ∝ T 3 (see lower most curve in Figure
3.6). For larger dislocation spacings the crossover shifts downward in frequency and a significant
number of phonons see the GB as a collection of linear defects with n̄ = 2 and τ−1 ∝ ω, leading to
κph ∝ T 2. This crossover in τ−1 also means that for any fixed D there is a transition from κph ∝ T 2

to κph ∝ T 3 at a crossover temperature which is related to ω∗.

We now wish to compare our model for GB strain scattering with experimental thermal conductivity
data of real materials. We choose polycrystalline Si [43], AlN [44] and Al2O3 [45] as model systems.
The data for AlN given by Watari et al. is specifically included because the sample was synthesized
with clean GBs with almost no GB oxide phase. The intrinsic phonon scattering parameters are
given in Table 3.1 as before. In addition, material parameters related to GB strain scattering
are required to calculate τgbs. These parameters are given in Table 3.2 and are obtained as follows.
Literature values are used for the average speed of sound, Grüneisen parameter, and Poisson’s ratio.
When applied to a bulk polycrystal, τgbs in Eq. 3.14 is meant to embody phonon scattering off an
ensemble of GB structures within the polycrystal. Thus, one may interpret D as the characteristic
length scale of GB structure in the polycrystal and b as an average GB dislocation Burger’s vector.
Recognizing the energetic considerations which require dislocations to have Burger’s vectors which
are integer multiples of a primitive unit cell vector (see Figure 9-2 in Ref. [58]), a good approximation
(and lower bound) for the average GB Burger’s vector is bGB = (V N)1/3, where V is the volume
per atom and N is the number of atoms in the primitive unit cell. When chosen in this way, bGB is
fixed and the only adjustable parameters are D, and the average grain size d̄. The latter is related
to the linear density of interfaces by calculating the GB area over volume assuming cubic grains,
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Figure 3.6: General features of the influence of phonon-grain boundary (GB) strain-field scattering on low
temperature lattice thermal conductivity. The figure is based on parameters appropriate for Si with a Debye
dispersion as described in the text. Curves are shown for several values of GB dislocation spacing (D),
corresponding to GB angles (θGB shown in the legend. When D is small, phonons see the grain boundary as
a planar defect (n̄ = 1) resulting in ω-independent scattering and κph ∝ T 3. When D is large the phonons
see the grain boundary as an array of independently scattering line defects (n̄ = 2) which gives τ−1

gbs ∝ ω,
leading to κph ∝ T 2 behavior at low-T . The full and dashed lines are calculated using the full summation
(Eq. 3.13 and G.4.13) and the semi-empirical formula (Eq. 3.14), respectively.

i.e., n1d = 3/d̄. The agreement between the experimental grain sizes and the values used in this
modeling study is reasonable, as can be seen in Table 3.2.

The results of this comparison are shown in Figure 3.7. The figure includes data for both single
and polycrystalline materials. The single crystal data of AlN and Al2O3 show classic T 3 power laws
at low-T , indicative of Casimir scattering from crystal surfaces. Thus, in the theoretical modeling,
ω-independent Casimir scattering is incorporated by adding a term τ−1

Casimir = vg/Lsc in the total
scattering rate. Here, Lsc is the size of the single crystal (Table 3.1). By contrast, all polycrystalline
data show T 2 dependence at low-T . This dependence is captured by our GB strain scattering model
and demonstrates the importance of defect dimensionality considerations. The figures also show a
comparison of the data with the commonly used gray model, where instead of using τ−1

gbs in Eq. 3.18
we use τ−1

gray = vg/d̄. As discussed in the 3.1 τgray is ω-independent (like the AMM and DMM at low
temperatures) since it is a direct extension of Casmir scattering to polycrystals and thus predicts a
T 3 power law which is not seen. In addition, the low-T magnitude of κph given by the gray model
is too low by several orders of magnitude. We note that the value of d̄ used to produce the dashed
lines in Figure 3.7 is adjusted to match the magnitude of the roll-over κph. This value differs from
that shown in Table 3.2 by at most a factor of two. Were this adjustment not made the comparison
with experimental data would be worse. We note here that for the theoretical modeling we have
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Table 3.2: Material parameters used for grain boundary strain scattering, τ−1
gbs. *Grain size distribution

having a standard deviation of 48% of the average grain size, 0.55µm.

Material Parameter Value

Si AlN Al2O3

Average speed of sound, vs [m/s] 6084 [43] 6976 [74] 7011 [75]

Grüneisen parameter, γ 1 [76] 1.1 [77] 1.3 [78]

Poisson’s ratio, ν 0.27 [79] 0.2 [74] 0.23 [75]

Volume of per atom, V
[
Å3
]

20 10.4 8.5

Atoms per primitive unit cell, N 2 4 10

GB Burger’s vector, bGB = (V N)1/3
[
Å
]

3.4 3.5 4.4

Characteristic length of GB structure, D [nm] (model) 3 8 5.5

Average grain size, d̄ [µm] (model) 0.35 1 1

Average grain size, d̄ [µm] (experimental) 0.29 to 0.8* 8 5 to 30

used both Debye and Born-von Karman (BvK) dispersions (Appendix D) and as can be seen the
differences are not significant except for the softest material considered here, Si. In particular the
low-T power law behavior is not affected when dispersive phonons are considered.

The characteristic length scale parameter D deserves further discussion. We can understand the
values used in our theoretical model by considering the case of Si. The modeling results show that
GBs with characteristic lengths of D & 3 nm will display κph ∝ T 2 like behavior above ∼ 15K,
as is observed experimentally. By relating D to a GB angle using Eq. 3.7, we can estimate that
GBs within 5 to 10◦ of a special boundary should have spacings larger than ∼ 3 nm. This includes
low-angle GBs , as well as GBs in the vicinity of special GBs at higher angle (e.g. Σ5 at 36.9◦

for symmetric tilt and twist boundaries in cubic materials) [50, 52, 51]. Given that this window
spans a significant range of possible GB angles, and that such GBs are low in energy [57], we argue
that a sufficient proportion of GBs that occur naturally in a polycrystalline material would scatter
with τ−1 ∝ ω, and result in κph ∝ T 2. While the results of this modeling study agree with the
experimental data available, controlled computation and experimental studies containing spectral
information of the phonon-GB interaction would help further validate the effects discussed here.

Structural information of interfaces can indeed be included when calculating the thermal boundary
resistance by computational methods such as molecular dynamics [80] or Green’s function methods
[81, 82], and much progress has been made regarding these approaches in recent years [4]. These de-
tailed methods are invaluable for progress in the field of heat transfer as the interfacial structure can
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Figure 3.7: Thermal transport modeling of polycrystalline (pc) a) Si, b) AlN, and c) Al2O3. Data for these
materials is taken from Refs. [43, 44, 45]. The intrinsic scattering parameters are fit to single crystals (sc)
and have the values shown in Table 3.1. The solid lines follow from the theoretical modeling as described in
the text. The data for polycrystals shows a clear T 2 power law in accord with our GB strain field scattering
theory and defect dimensionality arguments. The dashed lines show a comparison of the data with the gray
model. The error in the literature data is smaller than size of the data points on this logarithmic scale.
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be defined and systemically controlled, and spectral information can be obtained which is difficult to
obtain experimentally [83]. Due to the inevitable complexity of interfaces in real materials (e.g. the
grain boundary character distribution in a bulk polycrystal), detailed theoretical and computational
treatments should be used to establish engineering design principles which are generalizable and can
thus be applied to real systems. This work shows, through standard scattering theory, that general
kinematic arguments can explain measurable phenomena which emerge from this complexity. We
hope this work can help guide more detailed computational simulations and experiments.

Phonon-dislocation interactions have also been studied using molecular dynamics [84], and even ab
initio methods [85]. The ab initio technique of Wang et al. extends the T-matrix formalism to
phonon scattering on an array of dislocation quadrupoles, with the periodicity imposed by periodic
boundary conditions [85]. The structure calculated in Ref. [85] however eliminates the long range
(1/r) strain field [86] which is characteristic of dislocations and is known to be the dominant phonon-
dislocation interaction [87, 29, 88, 89, 35, 68]. This long range strain field is required to give the
τ−1 ∝ ω and thus κph ∝ T 2, so it is not surprising that this study does not find κph ∝ T 2. We
emphasize that the dislocation configuration considered in Ref. [85] does not describe a GB, and
since it does not contain the 1/r strain field it does not describe isolated lattice dislocations.

3.1.4 Discussion

Phonon scattering at interfaces is an inherently complex phenomenon where many physical pro-
cesses are at play simultaneously. This work focuses specifically on effects that arise when consid-
ering interfacial structure at the nanoscale by defining the interface as an array of linear defects,
rather than treating the interface as a structureless planar defect. This definition is sufficiently
general such that it includes many types of grain boundaries (particularly those of low energy) and
semi-coherent phase boundaries. Indeed the interface between two materials with structural peri-
odicity will tend to have structural periodicity itself, and we suggest that the standard model for
phonon-interface scattering should not assume perfect disorder at the interface. Several emergent
phenomena arise from this analysis stemming directly from this structural definition. These include
phonon diffraction conditions arising from the periodic structure of the interface and the wavelike
nature of phonons, as well as a crossover in the ω dependence of the phonon lifetime stemming
from dimensionality and phase space considerations. The general analytical expression derived was
applied to the specific case of a symmetric tilt grain boundary where the linear defects were defined
as the strain field from edge dislocations. The result is a phonon-grain boundary strain lifetime
(τgbs) that is independent of ω below a critical frequency ω∗ ' 4πvs/3D which depends on the
GB dislocation spacing D, and τ−1

gbs ∝ ω above ω∗. A simple semi-empircal expression is provided
as an excellent approximation of the full analytical expression, which embodies this dimensionality
crossover effect. This scattering theory is applied to standard phonon transport models and is shown



59

to explain the κph ∝ T 2 temperature dependence of polycrystalline and nanocrystalline materials
at low temperatures. This power law analysis provides evidence that the dominant phonon GB
scattering mechanism is through GB strain fields and that interfacial structure and strain energy
are important.

3.2 Thermal boundary resistance and GB strain energy3

One common challenge when establishing physical mechanisms which control thermal transport
across interfaces, is that experimental data usually probes transport across many grain boundaries.
Most commonly, the thermal conductivity of a polycrystalline material is measured as a function
of temperature (Figure 3.7). Changes in the thermal conductivity with modifications to either the
grain size or grain boundary complexion are then used to probe the thermal transport behavior
across the interfaces. Therefore, one must model the behavior of the ensemble of grain boundaries
present in the material. It is well accepted that the interfacial thermal resistance Rκ (or equivalently
the phonon-GB relaxation time) of a GB has a strong dependence on the detailed interfacial atomic
structure, including the misorientation between two grains and GB dislocations. The theory and
power law analysis presented in Section 3.1 provide evidence that phonon GB interactions are
dominated by the GB strain fields which arise from the GB dislocation structure. While the data
analyzed supports this physical picture, detailed measurements across single grain boundaries can
provide additional insight that bulk measurements on polycrystals cannot.

In this section, measurements of Rκ of single Si twist GBs, with varying misorientation angles are
presented. A super-flexible 70 nm thick Si thin film was hot pressed onto a Si wafer to represent
a twist GB. The Rκ of the film-wafer interface was measured as a function of the rotation angle
between the film and the wafer. The experimental data were further compared with an analytical
model to interpret the twist angle dependence of the measured Rκ.

It was found that the strain part of the grain-boundary energy is correlated with the measured twist
angle-dependent Rκ.

3.2.1 Si twist grain boundaries

Thermal investigation of twist GBs was performed with a 70-nm-thick (100) Si thin film hot pressed
onto a (100) Si wafer. Details on the synthesis of these samples are provided in Ref. [90]. The
high-quality interfaces achieved via film-wafer bonding were confirmed by transmission electron
microscopy (TEM) studies and enabled thermal studies of GBs across a large range of misorientation
angles, 3.4o ≤ θGB ≤ 86.5o. Figure 3.8 shows the θGB = 3.4o GB as an example. This angle is

3The content in this section was published by Xu and Hanus et al. in Ref. [90].
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70 nm Si film

Si substrate
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(a) (b) (c)

Figure 3.8: Transition electron microscopy images of Si twist GBs. a) Image of the GB with the electron
beam perpendicular to the GB plane normal vector < 001 >. The GB structure seems to be amorphous when
observed from this angle. b) Image of GBs with the electron beam parallel to the GB plane normal vector.
When viewed from this angle the GB dislocation structure can be observed, confirming that this procedure
produces clean GBs in their low energy configuration. Notice that the GB strain field thickness (3nm) shown
in panel a is approximately equal to GB dislocation spacing in panel b. c) A lower magnification image of
panel b.

chosen since the clean, low energy configuration is theoretically known (Figure 19-16 of Ref. [58])
and should be observable with TEM. When viewed with the electron beam perpendicular to the
plane normal (Figure 3.8a), the GB looks to have an amorphous structure approximately 3 nm in
thickness. However, when viewed with the electron beam parallel to the plane normal (Figure 3.8b),
the expected GB dislocation structure can be observed: two orthogonal arrays of screw dislocations
forming a grid structure. The spacing between dislocations observed in Figure 3.8b is approximately
equal to the GB ‘thickness’, or the size of the interfacial strained layer, observed in Figure 3.8a,
3 nm. This falls inline with the conventional understanding of the structure and local strain field of
GBs.

3.2.2 Rκ correlated with interfacial strain energy

Although GBs are varied and complex, the GB energy γGB is a useful single parameter that correlates
with many properties. The widely used Read-Shockley model [55] effectively describes the structure
of a GB as an array of dislocations [57, 59], as shown in Fig. 3.8b and c. In general, γGB is split
into two parts: the core energy γcore and the strain energy γstrain. The Read-Shockley model was
generalized by Wolf [57] into what is now called the extended Read-Shockley model, where the core
energy due to broken bonds across the interface (Ec/b) and the GB strain energy (Est/b) are treated
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Figure 3.9: Experimental data of the GB energy (γGB) and thermal boundary resistance (Rκ) of Si twist
GBs. Open circles (left axis) are data from Otsuki [91]. Blue squares (right axis) are Rκ data from this study
for samples after annealing. The lines are associated with the left axis and show the extended Read-Shockley
model for GB energies, where the core energy (γcore) and the strain energy (γstrain) sum to give γGB.

as fitting parameters

γGB = γstrain + γcore = 2 sin(2θGB)

[
Ec

b
− Est

b
ln(sin 2θGB)

]
; with 0o ≤ θGB ≤ 90o. (3.19)

We now apply this model to experimental data of γGB for (100) Si twist boundaries provided by
Otsuki [91]. This early study on Si-Si bicrystals was made using a solid-state bonding method at
1473 K for 10 hr. The boundary was wetted with a liquid Sn-Al alloy at 1473 K for three days in
Ar. Grooves were formed on the surface at the GB to satisfy the energy balance between the GB
energy (γGB) and the solid-liquid interfacial energy (γSL). The dihedral angle of the groove is thus
a measure of γGB normalized by 2γSL, which is taken to be a constant. A comparison of the GB
energy model in Eq. 3.19 to the experimental data is shown in Figure 3.9 with Ec/b = 0.35(2γSL)

and Est/b = 0.4(2γSL). As θGB increases, the spacing between GB dislocations decreases. As can
be seen in Figure 3.9, γstrain peaks between θGB = 10 and 15o and decreases at higher θGB due to
interaction between individual GB dislocations.

Watanabe et al. have analyzed the thermal boundary resistance data of diamond obtained via MD
simulations [59]. They concluded that the Kapitza length, which is directly proportional to Rκ,
is correlated with the γGB. In MD studies of two-dimensional polycrystalline graphene [92] or a
twist Si GB [93], a larger γGB was also found to lead to a higher Rκ. Comparing our experimental
data of Rκ of annealed Si twist GBs to the extended Read-Shockley model, it seems that Rκ



62

may be correlated with γstrain, the interfacial strain energy of the twist GB, instead of the total
energy γGB. To accurately capture the phonon-strain-field interaction in an MD simulation, the
anharmonicity and Grüneisen parameters of the material need to be accurately represented by
the interatomic potential employed. Because the transverse Grüneisen parameters of the Stillinger-
Weber and Tersoff potentials are significantly underestimated, the correlation between Rκ and γstrain

may be missed in existing MD simulations [94].

We note that this GB energy model neglects energy cusps that occur at special GBs, i.e. the Σ3

boundary at θGB = 36.9o, and the non- zero γGB at θGB = 90o. While the measured γGB does indeed
show cusps in GB energy at special boundaries, the experimental data available show that they are
relatively shallow. Although there will be additional complexities and variations from this model
when special boundaries are considered, we argue that the general trend of GB energy captured by
the extended Read-Shockley model may hold.
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Chapter 4

Lattice softening

As discussed in detail in Chapters 2.3.1 and 3, crystal defects induce phonon scattering and reduce
thermal conductivity by decreasing the phonon lifetime and mean free path. In this paradigm of
understanding the speeds of sound are assumed to be fixed when describing thermal transport.
Here, we present an often overlooked but important mechanism through which defects can decrease
thermal conductivity, which we refer to as lattice softening. Figure 2.3d illustrates lattice softening
in a k-space representation, where the phonon energies decrease (soften) upon the introduction of
defects. This phonon softening expresses itself through experimentally accessible material param-
eters such as a decrease in the materials speed of sound, Debye temperature, and elastic moduli.
These experimental metrics are particularly important because they probe the properties of the
acoustic phonon branches near the Γ-point. As discussed in Section 2.2.2, the acoustic branches are
typically the dominant heat carriers and the behavior of the properties at the Γ-point is expected
to reflect the behavior of the phonon modes up the acoustic branch. Other experimental probes
which are valuable in studying lattice softening include: Raman spectroscopy which can measure
the energy of optical phonon modes at the Γ-point (given that the symmetry allows it to be Raman
active), and inelastic neutron and X-ray scattering which can measure phonon dispersion relations
and density of states.

In this chapter we show several cases where defect induced lattice softening is critically important
when explaining the materials reduction in thermal conductivity. We first provide an example of
chemically induced lattice softening. Then we demonstrate a perhaps less intuitive effect, whereby
lattice softening can be induced by microstructural defects at constant chemical composition. We
demonstrate, in several important thermoelectric and microelectronic materials systems, how lattice
softening seems to have been a missing piece which is key for explaining the defect induced reduction
of thermal conductivity. The cases treated here also provide a ‘best practices’ for spectral phonon
transport modeling (Callaway-Klemens type models for κph, Eq. 2.22).
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4.1 Chemical lattice softening in SnTe1

The (SnTe)1−x(AgSbTe2)x system exhibits a much higher thermoelectric figure of merit (zT) than
its parent compound SnTe. One main reason is a dramatically reduced phonon thermal conductiv-
ity, κlat. Substituting Ag and Sb on the Sn site in SnTe is known to decrease κlat by ∼75%. In an
early study on this material system nanoprecipitates were oberseved via high-resolution transmis-
sion electron microscopy [96]. It was suggested that phonon scattering off of these nanoprecipitates
was the origin of the dramatically reduced κlat. Here, (SnTe)1−x(AgSbTe2)x solid solutions were
synthesized with no evidence of nanoprecipitates present. However, the dramatic reduction in κlat

was still observed. We reveal, through a combined theoretical, computational, and experimental
approach, that substitution of Ag and Sb on the Sn site promotes cation vacancy formation. These
cation vacancies act as strong phonon scattering centers and significantly soften the materials lat-
tice. The combined effect results in the 75% reduction in κlat, and is a main reason for the 300%
improvement in the thermoelectric figure of merit zT over its parent compound SnTe.

4.1.1 Microstructural analysis

Powder X-ray diffraction (PXRD) patterns for samples of AgSnmSbTe2+m (where x = (1 + m)−1)
after densification using spark plasma sintering (SPS) can be indexed to single-phase compounds
with a rock-salt SnTe crystal structure (synthesis and PXRD analysis are given in the Supplemental
Information of Ref. [95]). The variation of the lattice parameters for AgSnmSbTe2+m follows
Vegard’s law between two end members SnTe and AgSbTe2, implying continuous solid solution,
Figure 4.1a. The backscattered electron image and corresponding elemental maps from energy-
dispersive X-ray spectroscopy are shown in Figure 4.1b and c, respectively. Moreover, transmission
electron microscopy (TEM) indicates single-phase compounds and absence of second phases for
AgSn5SbTe7, Figure 4.1d. The AgSnmSbTe2+m samples in this study therefore are considered
complete solid solutions.

4.1.2 Defect chemistry and thermal conductivity

The earliest study on the thermoelectric properties of (SnTe)1−x(AgSbTe2)x can be traced back
to the 1960s [97]. Perhaps the most striking feature in the (SnTe)1−x(AgSbTe2)x system is the
dramatic reduction in κlat, which is far greater than is predicted from a simple mass difference
scattering model (Eq. 2.34). This reduction was again seen in the solid-solution samples of this
study.

1The content in this section was published in [95].
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Figure 4.1: (a) Room temperature lattice parameters of SnTe as a function of AgSbTe2 content. The
linear change in lattice parameter through the entire composition range suggests a full solid solution. (b)
Backscattered electron image, (c) corresponding elemental maps obtained from energy dispersive X-ray
spectroscopy. (d) Transmission electron microscopy image as well as selective area diffraction pattern (lower
left inset image in (d)) for the sample AgSn5SbTe7. There is no evident phase separation at either the micro-
or nano scale, which suggests a solid solution behavior between SnTe and AgSbTe2.

Here, it is experimentally observed that the substitution of Sb and Ag on the Sn cite simultaneously
increases the p-type carrier concentration (from Hall effect measurements, Table 1 of Ref. [95]),
decreases the average speed of sound (from pulse echo ultrasound and low temperature heat capacity,
Figure 4.2b) and decreases κlat (from laser flash analysis diffusivity). To understand the origin of
this decreased κlat, we first must understand the defect chemistry of the (SnTe)1−x(AgSbTe2)x

system.

Since Ag has an ionic charge of +1 and Sb has one of +3, a co-doping of Ag and Sb on the Sn2+

cite is expected to be charge neutral and the carrier concentration should not change, if no other
defects are induced. However, the p-type carrier concentration increased, suggesting an increase in
the cation vacancy concentration. SnTe is known to naturally exist as Sn-deficient, and the p-type
carrier concentration of SnTe can be changed from 1.5 to 6× 1020 cm−3 by simply changing the Sn
content. In this study it was observed that Ag and Sb substitution can increase the p-type carrier
concentration to as high as 14× 1020 cm3.

To understand this effect further, density functional theory (DFT) calculations were conducted to
examine the defect formation energies of pristine SnTe, and SnTe containing (Ag,Sb) co-substitution
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Figure 4.2: a) Schematic diagram summarizing the results of the DFT defect energy study. Ag and Sb prefer
to reside as nearest neighbors on the metal sublattice and promote Sn-vacancy formation. Each Sn-vacancy
contributes two holes to the valance band. b) Experimental measurements of the average speed of sound.
The measured Hall carrier concentration for the end members are labeled. Ag and Sb promote cation vacancy
formation which increases the carrier concentration and decreases the average speed of sound.

on the Sn site. First, a single Sn vacancy in a pure Sn27Te27 54 atom unit cell was calculated.
To compare the changes in Sn vacancy formation energy upon Ag and Sb addition, we also cal-
culated various Ag and Sb substitutions on Sn in AgSn25SbTe27 before adding a vacancy. We
found that Ag and Sb are more favorable residing as first nearest neighbors in the metal sublat-
tice. On the basis of the most favorable AgSn25SbTe27 configuration, we considered all possible
Sn vacancy positions around Ag and Sb. We found that VSn prefers to reside on an Sb side,
which is schematically shown in Figure 4.2a. The relative VSn formation energy is calculated by
EVSnAgSb − EAgSb − (EVSn − Epure). Here EVSnAgSb is the total energy of the Sn vacancy in Ag and
Sb codoped SnTe (Ag�Sn24SbTe27, � represents a vacancy), EAgSb is the total energy of the most
favorable Ag and Sb codoped SnTe (AgSn25SbTe27), EVSn is the total energy of the Sn vacancy in
pure SnTe (Sn26�Te27), and Epure is the total energy of pure SnTe (Sn27Te27). We found that the
single Sn vacancy formation energy decreases by 0.58 eV for the Ag and Sb codoped case relative
to pure SnTe. The decreased formation energy suggests that the Sn vacancies in Ag and Sb sub-
stituted system are even more favorable than those in SnTe and hence accounts for the higher hole
carrier concentration, as experimentally observed (Table 1 of [95]). In addition, the increased cation
vacancy concentrations have a dramatic impact on thermal properties, as will be discussed below.

To understand the effect of alloying on thermal conductivity and its link to lattice softening, we
measured the longitudinal (vL) and transverse (vT) speeds of sound. We found that the measured
vL and vT for the m = 5 sample reduce by 10 and 14%, respectively, compared to those of the
parent SnTe composition (Table S1 of [95]). The calculated average speed of sound is shown in
Figure 4.2. Furthermore, the Debye temperatures (θD) derived from the low-temperature heat
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capacity measurements showed a systematic decrease from 175 to 160 K with increasing AgSbTe2

concentration (Figure S2 of Ref. [95]). This again confirms the lattice softening of SnTe upon
AgSbTe2 addition.

To explain the observed lattice softening upon AgSbTe2 alloying indicated by the sound velocity
and heat capacity data, we need to consider the role of defects in the system. It is important to note
here that the cation vacancy concentration in SnTe increases from 0.7 to 4.6% upon alloying with
AgSbTe2 (m = 5) by estimating that each vacancy generates two holes that are solely responsible
for the carriers observed in the system. To distinguish the role of the AgSn and SbSn substitutional
defects in the solid solution from that of the increasing cation vacancy concentration, we calculated
the isotropic speeds of sound from the elastic modulus tensor of Sn1−xTe and SnTe−AgSbTe2

(Figure S3 of Ref. [95]). We found that the speed of sound for SnTe stays approximately constant,
with Ag-Sb alloying on the Sn site. On the other hand, we found significant reduction in speeds of
sound with increasing Sn vacancies (VSn). The longitudinal (vL) and transverse (vT) speeds of sound
decreased by 9 and 16%, respectively, in the structure containing 6% vacant Sn sites in comparison
with stoichiometric SnTe. These calculations are in reasonable agreement with our experimentally
measured speeds of sound. We presume that the lattice softening observed both experimentally
and computationally is due to removal of electrons occupying bonding states with the formation of
cation vacancies. Thus, we demonstrate that the reduction in speeds of sound must stem from the
formation of cation vacancies accompanying the alloy formation instead of atom substitutions on
the Sn site.

Now, we conduct a systematic modeling study to determine the mechanisms through which κlat

is being reduced, recognizing the defect chemistry discussed above. A Callaway-type (Eq. 2.22)
model is constructed which can capture the influence of the Sn-vacancies on thermal conductivity.
The experimentally measured speed of sound for each sample was used when setting the phonon
dispersion relations. In this way, the significant experimentally observed lattice softening could be
incorporated into the thermal transport model without the use of fitting parameters or literature
values. The model uses the isotropic phonon branches because the speed of sound was measured
on polycrystalline samples with averaged crystallographic orientations. Both Debye and Born-von
Karman acoustic branches were used for the phonon dispersion relation, giving nearly equivalent
results (primarily because we are analyzing κlat above the Debye temperature). The lattice thermal
conductivity was calculated by Eq. 2.22, where the total phonon relaxation time was calculated by
Mattiessen’s rule (Eq. 2.26).

To decouple phonon-phonon τpp, phonon-grain boundary τGB, and phonon-vacancy scattering times,
data from a SnTe single crystal (sample a of Damon [98]) was modeled along with the polycrystalline
SnTe and m = 5 samples of this study by the following procedure. The phonon-phonon scattering
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Figure 4.3: (a) Lattice thermal conductivity modeling. Data from a SnTe single crystal from Damon [98] was
modeled along with the polycrystalline SnTe sample and m =5 sample, AgSn5SbTe7 of this study. The gray
shaded region shows the reduction in κlat from SnTe to AgSn5SbTe7 solely due to lattice softening because
of decreased sound velocity, which is measured using ultrasound. The further reduction from gray to blue
(blue shaded region) is due to increased [VSn] and phonon-vacancy scattering. (b) ZT values as a function
of temperature for AgSnmSbTe2+m system. (ZT here is the material figure of merit.)

was accounted for using the following expression

τ−1
pp = A

ω2T

v2
pvg

(4.1)

and the phonon micro-structural scattering was accounted for by the simple phenomenological
expression

τ−1
GB =

vg

d
. (4.2)

Note that the phonon-phonon scattering parameter A includes material parameters such as the
Grüneisen parameter γ (which we measured to be approximately constant throughout the sample
series, Figure S4 of Ref. [95]), the average atomic volume and mass, but not the phonon velocity.
This is important because the speed of sound was observed to change with increasing Ag and
Sb content, and the dependence of τpp on phonon velocity should be embedded in the model. The
average grain size, d, can be considered a phenomenological fitting parameter accounting for different
phonon-microstructure scattering processes. The model is relatively insensitive to this parameter
in this case (in contrast to the case shown in Figure 3.7), making a more sophisticated model
unnecessary. Because SnTe has a large intrinsic Sn vacancy concentration ([VSn]) phonon-vacancy
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scattering was included for all samples with the following expression [99]

τ−1
vac = f

3V ω4

πv2
pvg

s2 (4.3)

where V again is the volume per atom. The phonon-vacancy scattering strength of s2 = 0.89 for Sn
vacancies in SnTe was determined by Ratsifaritana and Klemens [99] by analyzing the lattice thermal
conductivity of SnTe single crystals with different [VSn] and is used in this model. Sn vacancy
concentration was estimated using the simplified charge-neutrality equation: 2[VSn] = Np = f/V .
In this way, τvac was not fit but was set to experimental results. The results of this modeling
procedure are shown in Figure 4.3a (Debye approximation) and Figure S5 of Ref. [95] (Born-von
Karman approximation). To summarize, τ for the SnTe single crystal includes τvac and τpp, where
A was fit to single crystal data and fixed and f was set to the experimentally measured values. τ
for the two polycrystalline samples of this study included τpp, τvac, and τGB, where one value of
d was used for both samples because the hand milling and pressing procedure was the same for
each sample. The experimentally determined [VSn] and vs for these samples and all values used are
compiled in Table 4.1. Note that no fitting parameters were used to model the reduction in κlat from
SnTe polycrystal to m =5. Figures 4.3a shows that the dramatic reduction of κlat in SnTe with the
addition of AgSbTe2 can be explained by the increased number of Sn vacancies. These vacancies
soften the lattice, resulting in a reduced speed of sound, which accounts for a significant reduction
of κlat. This is indicated by the gray line and shaded region where [VSn] is kept constant and only
the phonon velocity is changed. The remaining κlat reduction (blue shaded region) is attributed to
the strong phonon scattering from the increase in Sn vacancy concentration.

One important attribute of this model is that phonon-vacancy scattering is inherently much stronger
than the commonly used phonon-isotope scattering with the relative change in atomic mass ∆M/M =

1. For example, Eq. 4.3 can be converted to the phonon-isotope scattering experession by the fol-
lowing relation, 12s2 = (∆M/M)2, meaning s2 = 0.08 for ∆M/M = 1. This is more than an
order of magnitude smaller than the value used in this model (s2 = 0.89), which was determined
experimentally in the literature for Sn vacancies in SnTe [99]. The reason for this discrepancy
stems from the fact that phonon-isotope scattering with ∆M/M = 1 accounts for only the change
in kinetic energy of the lattice (T in 2.10) and neglects changes in the potential energy upon the
removal bonds when an atom is removed (U). This result demonstrates the importance of tracking
the lattice stiffness experimentally (e.g., pulse echo ultrasound, resonant ultrasound spectroscopy,
low-temperature heat capacity) and incorporating these changes into the transport modeling when
studying the thermal properties of materials.

While this simple model reproduces the majority of the reduction in κlat, the experimental data are
still slightly lower than what the model predicts. We suspect that this could be attributed to the



70

Table 4.1: Parameters for κlat modeling.

sample
A (10−8 m3K−1s−2) d (µm)

[VSn] (1020cm−3) vS (m/s)
Debye BvK Debye BvK

single crystal 4 2.3 - - 0.8 2151

m = 0 polycyrstal 4 2.3 2 5 1.3 2151

m=5 polycrystal 4 2.3 2 5 7.3 1862

fact that we took the Hall carrier concentration to be a direct measurement of [VSn], while in reality
holes may come from other defects such as Ag vacancies (contributing one hole per vacancy), which
would result in higher vacancy concentrations. Additionally, the effects of Ag and Sb on the Sn site
were neglected because of the negligible mass difference of these atoms. However, there will still be
bond strength disorder, which may introduce non-negligible scattering contributions.

We further increased maximum ZT to ∼ 1.2 at 800 K by properly doping AgSn5SbTe7 with iodine
to optimize the electronic transport properties, Figure S6 of Ref. [95]. This value represents a 300%
improvement over SnTe.

4.2 Microstructural lattice softening2

The influence of micro- and nano-structure on thermal conductivity is a topic of great scientific
interest and of particular technological importance to thermoelectrics and microelectronics. In the
previous section we discussed how when chemical composition and defect chemistry changes, the
materials average speed of sound should change as well which has an important impact on the
phonon thermal conductivity. However, at constant chemical composition it is typically assumed
that the materials speed of sound does not change, and the materials elastic properties are usually
held constant when examining the thermal conductivity. In this section, by examining PbTe and
Si model systems, we show how microstructure can soften a materials lattice, at constant chemical
composition. Spectral thermal conductivity modeling shows that microstructural lattice softening
can play an important, and sometimes dominant, role when describing the defect induced reduction
in the phonon thermal conductivity. In practice, many engineering materials will exhibit both
softening and scattering effects, as is shown in silicon. This work shines new light on studies of
thermal conductivity in fields of energy materials, microelectronics, and nano-scale heat transfer.

Pushing the thermoelectric figure of merit beyond two (zT > 2), has been a milestone achievement
in the field of energy science. In PbTe, this high zT has been achieved by significantly reducing the

2The content in this section was published by Hanus et al. in [100].
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Figure 4.4: Milestone improvements in the figure of merit (zT ) of Na-doped PbTe due to reductions in
lattice thermal conductivity (κL) (a) The improved zT was previously attributed solely to phonon scatter-
ing from micro/nanostructural defects. Data for (Na,Sr)-PbTe (Pb0.98Na0.02Te-10%SrTe) are from [101],
(Na,Eu)-PbTe (Na0.025Eu0.03Pb0.945Te) from [102], and Na-PbTe from [103]. (b) A reduction of κL upon the
introduction of micro/nanostructural defects. The lines show the κL = Av3

sT
−1 model describing phonon

thermal conductivity in the high-T limit where the only scattering mechanism is phonon-phonon scattering.
A is normalized to the Na-PbTe sample and fixed. The shaded region shows the reduction in κL expected
from lattice softening alone, without assuming an increase in phonon-defect scattering centers. Phonon scat-
tering mechanisms could account for the remaining reduction in κL, depicted by the cross-hatched region.
The speed of sound (vs) reduction, measured in this study, is given in the legend. The circles are data for
a Na-doped (0.75% Na) sample synthesized and measured in this study. The square data points are a low
dislocation density sample from Ref. [104] (Na0.015Eu0.03Pb0.955Te).

lattice thermal conductivity (κL) at high temperatures [101, 102] (Figure 4.4a and b). The reduction
of κL in PbTe, and many other thermoelectric and systems, has been realized by controlling the ma-
terial’s micro/nanostructure. This reduced κL has been rationalized by assuming the lattice defects
introduce additional scattering centers which reduces the phonon mean free path (and relaxation
time) while the speeds of sound and phonon dispersion are assumed to be fixed (present authors
included). However, κL is very sensitive to changes in the phonon dispersion and thus a materials
speed of sound (vs). This can be demonstrated by considering a spectral analysis of the phonon
thermal conductivity given in Eq. 2.22. At high temperatures (T > θD), when phonon-phonon
scattering dominates (τ = τpp) Eq. 2.22 becomes (details given in Section D.3) [105, 72]

κL =
(6π2)2/3M̄

V 2/34π2γ2

〈
v3

g

〉

T
= A

v3
s

T
. (4.4)

This simple expression produces the same results as the spectral Callaway model (Eq. 2.22) when
T > θD and τ = τpp (Eq. D.3.2), and is consistent with the model used by Tan et al. [95]. We
express it this way to demonstrate the sensitivity of κL on lattice stiffness which is reflected in the
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cubic dependence of κL on phonon velocity. We denote the average group velocity over the Brilluon
zone as

〈
v3

g

〉
which is defined in Eq. D.3.4. Additionally, we consolidate the numerical constant

and factors of the average atomic mass M̄ , atomic volume V , and Grüneisen parameter γ into the
coefficient A. In practice, A will be normalized to a pristine (control) sample and the change in
speed of sound will be used as an estimate for the change in average group velocity (

〈
v3

g

〉
∝ v3

s ).
Thus, if the speed of sound (i.e. lattice stiffness) can be engineered in a material it is expected
to be an effective parameter for controlling κL. In fact, tuning the lattice stiffness is expected to
have a larger impact on κL than micro/nanostructural scattering in some cases. Specifically, at
high temperatures, when phonon-defect scattering in anharmonic materials is competing with an
intrinsic phonon-phonon mean free path which is already very short. For example, 75% of the heat
in intrinsic PbTe is carried by phonons with a mean free path less than approximately 10 nm (at
room temperature), compared to 1000 nm (at room temperature) for Si [106]. This means only
lattice defects that are spaced on the order of 10 nm should significantly influence κL in PbTe [107],
and this length decreases with increasing temperature.

Internal-strain fields, which are induced by lattice defects such as dislocations and nanoprecipitates,
will locally change phonon frequencies within the material and can, in principle, lead to lattice soft-
ening. This simultaneously changes phonon speed and induces phonon scattering. The two distinctly
different effects are illustrated in Figure 2.3a. Again, the importance of each effect on the lattice
thermal conductivity depends on intrinsic material properties and the nature (e.g. length scale)
of the internal-strain fields. Specifically, when phonon-phonon scattering is strong (in anharmonic
materials and at high temperatures) phonon-strain field scattering is expected to be less important
and lattice softening is expected to dominate. Therefore, lattice softening provides a promising
avenue for engineering the high temperature thermal conductivity of anharmonic materials, such as
thermoelectrics.

Several cases have been presented where an improvement in thermoelectric efficiency is attributed
to chemical lattice softening due to alloying or the introduction of vacancies [95, 108]. Additionally,
there has been much discussion about the connection between the chemical bonding, and a materials
intrinsic lattice stiffness and anharmonicity [109]. Due to the unique bonding characteristics of IV-
VI compounds, such as PbTe, they are likely sensitive to the introduction of microstructural defects
and in particular lattice strain.

Here, we show a different lattice softening effect where the speed of sound is engineered in stoichio-
metric PbTe, by changing the amount of internal-strain induced by lattice defects. Astonishingly,
in PbTe the observed reduction in speed of sound completely accounts for the reduced κL. Addi-
tionally, internal-strain induced lattice softening is shown to be a major reason for the reduced κL

in high efficiency (zT > 2) compositions of Na-doped PbTe [101, 102]. Establishing internal-strain
softening as a mechanism for engineering thermal conductivity is not only of critical importance
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to the field of thermoelectrics, but is also valuable to the fields of nanoscale heat transfer [40],
microelectronics [3, 110], and thermal barrier coatings [111, 112].

4.2.1 Results

Lattice softening and thermal conductivity of PbTe

To determine the influence of microstructure and internal-strain on thermal conductivity, stoichio-
metric PbTe samples were synthesized with varying amounts of internal-strain induced by high
energy ball milling (Section 4.2.4). The low Debye temperature of PbTe (θD ≈ 150K) means that
room temperature measurements are within the ‘high temperature’ limit and Eq. 4.4 is applicable.
Since the focus of this study is the lattice thermal conductivity (κL), the samples were left undoped
and were analyzed at temperatures where bipolar effects are negligible (below 400 K). The elec-
tronic contributions to the total thermal conductivity were found to be less than 1% of the total
(i.e., κ ' κL). The internal-strain of each pellet sample was measured via XRD peak broadening
by the Williamson-Hall method. The thermal and elastic properties of each pellet were measured
by the laser flash method (Section 4.2.5) and pulse-echo ultrasound (Section E.1), respectively. The
time delay between ultrasound reflections was accurately determined via the maximization of the
cross-correlation such that the largest source of error was the measurement of the sample thickness
[113]. The error of the pulse-echo measurement was determined to be approximately 1%.

Bulk PbTe pellets containing increasing amounts of internal-strain showed significantly decreased
speeds of sound, and this lattice softening was found to completely account for the observed re-
ductions in κL (Figure 4.5). Quantitatively, we use Eq. 4.4 and normalize the coefficient A to the
nominally unstrained sample (green squares in Figure 4.5). This value, A = 1.09×10−7 Ws3m−4, is
held constant so that vs is the deciding parameter of the model. Thus, since vs is a measurable, there
are no additional free parameters in this model. We note that the experimentally determined value
of A is within a factor of three of the theoretical value found for PbTe (A = 2.6 × 10−7 Ws3m−4).
This agreement is comparable to models used to predict κL with semi-emperical models or even ab
intio calculations [114, 115].

The reduction in κL measured in these samples can be completely accounted for by lattice softening
effects alone (see Eq. 4.4 and Fig. 4.5a,b). It is important to recognize that small changes in vs

correspond to large changes in κL. For example, the 7% reduction in vs observed in stoichiometric
PbTe results in a 20% reduction in κL, without introducing additional scattering parameters.

To verify the κL ∝ v3
s relationship, a second series of samples were synthesized and measured, and

the results are displayed in Figure 4.5b, 4.5c, and Figure S4 of Ref. [100]. The agreement between
this reproducibility study and the primary study is shown in Figure 4.5b. Care was taken to ensure
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Figure 4.5: Lattice thermal conductivity of PbTe samples with different amounts of internal strain and
average speeds of sound (vs). (a) κL vs. T of three characteristic samples. The lines are applications of the
κL = Av3

sT
−1 model where, since the coefficient A = 1.09 × 10−7Ws3m−4 is normalized to the unstrained

sample (squares) and held constant, there are no adjustable parameters and only difference in the model
between samples is the measured vs. (b) A different representation of Eq. 4.4, showing the data in panel
(a) in comparison to a reproducibility study containing three independently synthesized samples (Figure S4
of [100]). The dashed lines show a 5% error in κL. This data shows that the reduction in lattice thermal
conductivity in stoichiometric PbTe is fully accounted for by lattice softening. (c) The measured grain size
(filled data points) and density (empty data points) of each sample versus its room temperature κL showing
that all samples have a density between 97 and 99% of the theoretical density, are large grained, and that
there is no systematic trend of κL with grain size or density.

that there was no systematic relationship between κL and grain size or density. Figure 4.5c shows
that all sample had a density above 97% of the theoretical density (confirmed by both the geometric
and Archemedes method), and that there is no systematic trend of κL with grain size measured
via scanning electron microscopy (Figure 4.12). Since the speed of sound measured ultrasonically
is sensitive to sample density, the lattice softening measured was confirmed by low-T heat capacity
measurements and is shown in Figure 4.6. The 10% reduction in the Debye temperature, θD ∝ vs,
agrees with the 7% reduction of vs measured via ultrasound. Since PbTe is a soft material, the
Debye level is only observed below 2.5 to 3 K, making the ultrasound measurement more accurate
than this low-T heat capacity analysis. When analyzing the elastic properties of soft materials, it
can be important to validate softening effects with multiple experimental methods, but ultrasound
is recommended for obtaining quantitative values.

Lattice softening and internal strain

The reductions in speed of sound and lattice thermal conductivity correspond to an increase in
internal-strain. As can be seen in Figure 4.7, the speed of sound decreases linearly with an increase
in internal-strain measured via XRD peak broadening. The open diamond data point corresponds to
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Debye level, β, in the T −→ 0 K limit. Corresponding Debye model fits of β, from which Debye temperature
θD can be calculated, are shown for each data set. Inside parenthesis, θD and vs are shown as a percentage of
the nominally unstrained sample (green). The reduction in θD is in excellent agreement with the reduction
measured by pulse-echo ultrasound.

the isotropic average speed of sound of PbTe calculated from the components of the elastic tensor
measured on a single crystal [116, 117], and shows this linear trend of vs extends down to zero
internal strain.

Figure 4.7a shows the measurement of internal-strain of the pellet samples by Williamson-Hall
analysis of XRD peak broadening. β is the broadening (integral breadth) of the diffraction peak
at angle θ after correcting for instrument broadening. Figure 4.7b shows the peak fits of samples
containing small and large amounts of internal strain. Peak shape asymmetry can be observed,
particularly in samples with large amounts of internal strain, where the peak broadening is more
significant on the low 2θ (larger d-spacing) side of the peak maximum. This indicates that the
state of inhomogeneous internal-strain of these samples has a tendency to increase the lattice plane
spacing distribution. An increase in lattice plane spacing (d-spacing) most commonly corresponds
to a decrease in phonon frequencies and speeds of sound through considerations of the Grüneisen
tensor [118, 34]. From a chemical perspective, bond stiffness is inversely proportional to bond
length. A number of extended lattice defects are known to cause peak shape assymetry, including
dislocations and coherency strains [119].

The slope of the plots shown in Figure 4.7a is a measure of CεXRD, where εXRD is the internal strain
determined via the Williamson-Hall method, and C is a constant related to the nature of the strain
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and details of the analysis method [120, 121, 122]. The full peak broadening analysis, given in Section
4.2.4, shows that the strain state of the PbTe samples is consistent with dislocations having Burger’s
vectors in the 〈110〉 direction [58], in agreement with the analysis of Chen et al. [104]. Since the
spot size of the X-ray beam is approximately 10mm2, this method for characterizing strain is a bulk
measurement. While transmission electron microscopy provides detailed strain information about
specific defects it is limited to a small field of view and is often limited to nanoscale observations.
While grain boundaries and interfaces can be a means to introduce internal strain, they do not
appear to be the primary cause of internal-strain in the stoichiometric PbTe system (Figure 4.5c
and Figure 4.7).

The present study also characterized the speed of sound and internal-strain of the zT > 2 samples
shown in Figure 4.4 reported by Tan et al. [101] and Chen et al. [102]. Remarkably, these mea-
surements follow the same trend as that measured in stoichiometric PbTe synthesized for this study
(Figure 4.7). These data indicate that the same softening mechanism observed in the stoichiometric
PbTe samples of this study is also present in the high-zT (Na,Eu)-PbTe and (Na,Sr)-PbTe systems.
The measured vs in these two samples suggests that a large percentage of the reduction in κL is due
to lattice softening alone (Figure 4.4b).

The relationship between strain and phonon frequency (and thus the speed of sound) is described
through the Grüneisen tensor Eq. 2.43 which at small strains can be written as

ω = ω0(1− γijεij), (4.5)

where ω0 is the phonon frequency at zero strain. Recognizing that ω ∝ vs at low ω, it is possible to
define an engineering Grüneisen parameter γint, which is associated with the internal-strain state of
PbTe measured via XRD. Then,

vs = vs,0 (1− γintεXRD) . (4.6)

This expression is consistent with the experimental observation of a linear dependence of speed
of sound on strain. From a fit of Eq. 4.6 to the experimental data in Figure 4.7c using C = 4

[122, 121, 120], we estimate that γint = 5, which is of the same order as the thermodynamic
Grüneisen parameter of PbTe (γ = 2.2, Ref. [116]). The order of magnitude agreement between
γint and γ for PbTe strongly supports the argument that internal-strain is the origin of lattice
softening, reduced κL and improved zT . It should be noted that the analysis shown in Figure 4.7a
determines relative changes in internal-strain, and that the absolute magnitude of internal strain
depends on the value of C. Thus, γint is an experimental parameter that is expected to be consistent
when the analysis method is consistent between samples. Several other theories predict softening
with increasing strain and/or dislocation density [123, 124, 125, 126]. Theories that relate lattice
softening explicitly to strain energy give a quadratic dependence on strain, rather than the linear
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Figure 4.7: Speed of sound decreases linearly with increasing internal-strain in PbTe based materials. a)
Williamson-Hall strain analysis of stoichiometric PbTe, as well as Na-doped, high zT, compositions (colors
are consistent with Figure 4.4 and 4.5). β is the integral breadth (peak area/height) of a diffraction peak
at θ. The slope of the plots (CεXRD) are proportional to the average internal-strain in the material (details
in Section 4.2.4). b) Example peak fits of a low and high internal-strain samples (circled in panel (c)).
Diffraction peaks in samples with large amounts of internal-strain show peak shape asymmetry where the
peak has a larger broadening on the low 2θ (larger d-spacing) side of the peak maximum. c) The speed of
sound (vs) measured by pulse-echo ultrasound versus the internal-strain (CεXRD) as measured in panel (a).
The increase in internal-strain is correlated with a linear decrease in the speed of sound, a reduction in the
lattice thermal conductivity, and improved thermoelectric efficiency.

dependence observed in this study [124, 125, 126].

4.2.2 Discussion

Temperature dependence of κL reduction: scattering vs. softening

Lattice softening is fundamentally different than phonon-defect scattering as a mechanism to reduce
κL. Thus, softening and defect scattering have distinguishing features in the temperature depen-
dence of κL. This difference stems from the fact that phonon-phonon scattering has a τ−1

pp ∝ T

temperature dependence above the Debye temperature, whereas all elastic phonon-defect scattering
mechanisms (τdefect) are independent of temperature, given that the defect concentration is approx-
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imately constant with temperature (Table I of Klemens [127]). Consequently, phonon-defect scat-
tering should be proportionally more effective at lower temperatures than at higher temperatures.
Lattice softening is effective at all temperatures since it reduces thermal conductivity regardless of
scattering mechanisms. This is demonstrated in the schematic model shown in Figure 4.8, which is
based on Eqs. 2.22, 2.18, and D.3.2. The black line indicates a pristine sample with speed of sound
vs,1 (e.g. a single crystal, or nominally unstrained and large grained polycrystal). The dashed line
represents a defective material where the speed of sound stays constant at vs,1 and κL is reduced
by defect scattering (i.e. temperature independent τdefect). The dark red line illustrates a reduction
in κL through lattice softening (i.e. a reduction in speed of sound, vs,2 < vs,1) without changing
scattering mechanisms. When analyzing thermal conductivity as κL vs. T (as in Figure 4.8a) it
may be difficult to determine if scattering or softening is the primary mechanism of κL reduction.
However, the difference in the temperature dependence can be more clearly seen by normalizing
the thermal conductivity of the defective sample by that of the pristine sample (κ/κo). A positive
slope of κ/κo with temperature is characteristic of phonon-defect scattering. In contradistinction,
if lattice softening dominates, κ/κo is expected to be constant with temperature (Figure 4.8b). To
verify lattice softening effects are present, elasticity, low-T heat capacity, and/or phonon density of
states measurements are required.

Lattice softening has been observed by low-T heat capacity in Si, where the measured vs reduces
from 5830m s−1 in a Si single crystal [128] and 5700m s−1 in a polycrystal, to 4440m s−1 in a
nanocrystalline material [129]. However, the phonon-phonon mean free path in Si is large at room
temperature, with 75% of the heat being transported with a mean free path (Λ = vgτ) larger than
approximately 100 nm. Therefore, nanocyrstalline Si is still expected to have significant phonon
scattering effects at room temperature due to grain boundary scattering. Figure 4.9a shows the
lattice thermal conductivity of single crystal [73] and nanocrystalline Si with an average grain size
of 42 nm [129]. The lines show a transport model constructed to estimate the relative importance
of lattice softening and phonon-scattering in this system. This Callaway-type model has been
used previously for Si [130, 39], but did not consider changes in speed of sound. In these studies,
τpp is calibrated to single crystalline data and fixed. Here, τpp is parameterized to capture the
experimentally observed lattice softening effects, such that the explicit dependence of τpp on the
phonon velocity is left intact (Eq. 4.15). In the previous studies [130, 39], this dependence was
buried in the numerical constants. Thus, the model used herein is able to capture lattice softening
effects. It is not surprising, then, that the 24% reduction in vs going from single- to nano-crystalline
Si coincides with a large predicted reduction in κL (red shaded region in Fig. 4.9a). To account
for grain boundary scattering in the nanocrystalline material, the relaxation time due to phonon
interactions with lattice rotation and localized strain fields at grain boundaries (τgbs) is applied
(Eq. 3.14, [39]). All parameters associated with the nanoscale structure of the grain boundaries are
fixed to those that were used in the low-T κL model in Figure 3.7, and the grain size was set to
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Figure 4.8: A schematic transport model demonstrating the characteristics features of defect scattering and
lattice softening mechanisms in the reduction of lattice thermal conductivity (κL). a) The κL of a pristine
sample (κo) compared to the κL of defective samples where the reduction in κL is induced by phonon-defect
scattering and lattice softening. In the pristine sample (κo), and the case of lattice softening (dark red),
τ−1 = τ−1

pp ∝ T . For the case of phonon-defect scattering (dashed), τ−1 = τ−1
pp + τ−1

defect ∝ T + constant. b)
The ratio of κL for the defective sample over that for the pristine sample. A positive slope of κ/κo indicates
significant phonon scattering effects, and no slope indicates softening effects.

42 nm, which was measured experimentally [129]. Therefore, the model captures the entire reduction
of κL from single- to nano-crystalline samples using experimentally measured speed of sound and
grain size, without any additional fitting parameters (black and teal lines in Figure 4.9a). This
model indicates that at room temperature, phonon-grain boundary scattering and lattice softening
are equally important, whereas at high temperatures (> 1000K) lattice softening dominates. The
dashed line shows a predicted κL if lattice softening is not included. Phonon scattering on point
impurities and free charge carriers in the Si-nc were determined to be negligible and are discussed
in Section 4.2.5.

In Figure 4.9b and c, we show the κL of the defective samples normalized by that of the pristine
sample (Si single crystal, and large grain unstrained Na-PbTe). Indeed, a positive slope in κ/κo

vs. T is observed in Si near room temperature, where significant scattering is present (compare to
Figure 4.8b). In PbTe, however, κ/κo vs. T is relatively flat which is consistent with the lattice
softening measured in Figure 4.7. This analysis of Si and PbTe demonstrates that lattice softening
and scattering effects can both contribute to the reduction of κL in engineering materials. However,
the relative contribution of each effect depends on the specific material and microstructure. Here, it
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Figure 4.9: The temperature dependent reduction of lattice thermal conductivity (κL) in Si and PbTe. a)
A Callaway-type thermal transport model used to estimate the effects of lattice softening and phonon-grain
boundary scattering in reducing κL from single cyrstal (sc, [73]) to nanocrystalline (nc, [129]) Si, with
average grain size of 42 nm. The red shaded region shows the reduction in lattice thermal conductivity
expected from measured lattice softening alone. Phonon-grain boundary scattering was included using the
expression derived by Hanus et al. [39], τgbs, where the only parameter changed from Ref. [39] to this
study is the grain size. Therefore, the only parameters in the model changed from Si-sc to Si-nc are the
experimentally measured vs and grain size. The dashed line shows the predicted κL if lattice softening is not
included. b) The normalized κL of Si-nc showing a positive slope with T around room temperature indicates
phonon scattering effects are important. c) The normalized κL of high-zT Na-doped PbTe samples showing
a flat temperature dependence indicating that lattice softening is important.

is shown that lattice softening can account for over 50% of the reduction in κL, and is consequently
a primary mechanism with which to engineer thermal conductivity.

The connection between speed of sound and heat carrying phonons

The speed of sound is a measure of the slope of the phonon dispersion relation near the center of
the Brillouin zone (Γ-point). Acoustic measurements of speed of sound and elastic properties are
typically made in the kHz to MHz frequency range. Measurement of the speed of sound at higher
frequencies can be obtained from the Debye level found from low-T heat capacity (≈ 102 GHz) or
phonon density of states (≈ 1 THz). Phonons which carry significant amounts of heat are in the
THz frequnecy range. However, speed of sound is inherently a measurement of bond stiffness which
is governed by the interatomic force constants.

Interatomic force constants simultaneously govern the speed of sound as well as the frequency and
group velocity of phonons throughout the Brillouin zone [34] (see Appendix B and Figure 2.2a).
Consequently, acoustic measurements can be used as a gauge for the general behavior of the full
phonon dispersion. One justification for this is that the speed of sound has been shown to be an
accurate predictor for the average phonon frequency across material systems [131]. Additionally, it
is known that Raman-active optical modes typically have a linear strain dependence that can also
be characterized by a Gruneisen parameter [132, 133]. From theoretical considerations, this optical
Gruneisen parameter is ≈ 6.5 for ionic materials and ≈ 3 for covalently bonded materials [133].
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The phonon mode dependent Grüneisen parameter has been computed for PbTe and values for the
optical branches are of similar sign and magnitude [134]. The thermal conductivity of homogeneously
strained PbTe has also been computed by Murphy et al. [135]. The results show that positive
tensile strain, indeed, strongly reduced the transverse optical Γ-point frequency and the magnitude
of reduction in κL with increasing strain generally agrees with the experimental results presented
here. Therefore, speed of sound measurements are very useful in probing the bond stiffness and in
turn the general behavior of heat carrying phonons in defective systems where direct measurement or
calculation of THz phonons is prohibitively difficult or impossible (e.g. polycrystalline and heavily
strained materials).

Engineering thermal conductivity through lattice softening

Internal-strain induced lattice softening has been demonstrated as a promising method to reduce
thermal conductivity. Therefore, methods of introducing and maintaining large amounts of internal-
strain should be considered, rather than methods which increase the spatial density of defects, par-
ticularly in anharmonic materials. The PbTe study presented here utilized high-energy ball milling
in conjunction with a rapid hot-pressing procedure developed to minimize the annealling out of
internal-strain. Other processing techniques such as high pressure torsion [136], hot deformation
[137], and liquid phase sintering [65] may be optimized to maximize the amount of internal-strain
in the material. The softening effects in Si and Si-Ge alloys by Caudio et al. [129, 138], and in
Bi2Te3 and Sb2Te3 based materials by Klobes et al. [139] were seen with decreasing grain size.
While decreasing grain size often correlates with an increased amount of internal-strain, this is not
always the case (as we show in Figures 4.5 and 4.7). Nevertheless, given that microstructural defects
contribute to both lattice softening and scattering, it is no surprise that good thermoelectric mate-
rials with low thermal conductivity are highly defective. However, lattice softening is a particularly
promising avenue for thermoelectrics as it allows for a reduction in κL without the requirement of
a large spatial density of defects which likely induce electron scattering as well.

Beyond semiconductors, lattice softening has been measured in metallic [124] and ionic materials
[140] with increased point defect concentrations. The magnitude of such effects could be assessed
with similar experimental methods as those presented here. The totality of these reports indicates
that elastic softening should be important in many engineering materials other than PbTe. It is
interesting to note that the internal-strain softening effect described here may even be taken to the
limit of amorphous materials, which have been theoretically described as fully defective crystals,
and whose elastic moduli are nearly universally lower than their crystalline analogues [141].
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4.2.3 Conclusion

Here, in a PbTe model system, we experimentally established the importance of lattice softening
effects on thermal transport. Significant reductions in the thermal conductivity of polycrystalline
PbTe were completely accounted for by reductions in the materials average speed of sound, without
invoking additional phonon scattering terms. In nanocrystalline Si, both softening and scattering
effects were necessary to describe the thermal conductivity reduction. These results demonstrate
that monitoring the elasticity of a material throughout a study is of critical importance.

The reduction in speed of sound is found to be linearly related to the increase in the internal-strain
of a material. This can be described by defining an engineering Grüneisen parameter which behaves
like a material property of PbTe, γint ≈ 5. With this new understanding of lattice softening, and
its implications on thermal transport, it is not surprising that materials processing methods which
create and maintain large amounts of internal-strain tend to improve thermoelectric efficiency. Or,
more specifically, that these methods are effective at reducing the lattice thermal conductivity at
high temperatures, even in very anharmonic materials where the intrinsic phonon-phonon mean free
path is already very small.

4.2.4 Methods

Synthesis

Ingots (between 20 to 40 g) of nominally stoichiometric PbTe were prepared from elemental Pb
(Alfa Aesar, lead rod, 6.35mm diameter, 99.999%) and Te (Alfa Aesar, Tellurium lump, 99.999+%)
by melt reaction under vacuum (∼ 10−4 torr) in a carbon-coated quartz ampule (12 mm inside
diameter x 16 mm outside diameter) at 1000 oC for 4 to 6 hours and quenched in ice water. Each
ingot was independently pulverized by mortar and pestle and sieved to have an initial particle
size distribution between 20 to 120µm. This material was considered to be nominally un-strained.
Plastic deformation was introduced via high-energy ball milling for varying durations (5 to 120min).
The ball milling process was standardized such that 2.0 g of unstrained powder was loaded into a
stainless steel jar (with inner dimensions of 36.7mm in diameter and 57mm in height) along with
the same size and number of grinding media (2 stainless steel balls 12.7mm in diameter and 15
stainless steel balls 6.3mm in diameter) and sealed in an argon atmosphere. All powders were
consolidated by uniaxially hot pressing in a high density graphite die under argon atmosphere. The
maximum pressure of ∼ 45MPa and maximum temperature of 550 oC were held concurrently for
20min. As the temperature ramped from room temperature to 550 oC, the pressure was applied
stepwise in 10MPa intervals. Both temperature and pressure reached their maximum value in
10min. After consolidating for 20min, the samples were furnace cooled under a nominal pressure
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Figure 4.10: a) Internal strain of precursor powder versus ball milling time. High energy ball milling can
be used to systematically control internal strain energy, however there is a saturation of the internal strain
which depends on the details of the ball milling procedure (60 minutes in this case). The amount of internal
strain is only reproducible if: (1) the initial particle size distribution (2) amount of material being ball milled
(3) type of milling media and (4) the ball milling time are consistent, as can be seen by comparing the two
trials. The inset shows that the internal strain in the powder is roughly proportional to the internal strain of
the resulting pressed pellet. b) Powder internal strain and pellet speed of sound when all of the previously
mentioned experimental parameters are not controlled.

of 5MPa. All pellets had a density > 97% theoretical density (8.16 g cm−3), measured by both
geometric and Archimedes methods. To minimize error introduced in speed of sound and thermal
diffusivity measurements, all samples were sanded and polished to be parallel such that the thickness
variation was within 1% of the mean, measured with a micrometer.

Figure 4.10 shows the internal-strain (measurement described in Section 4.2.4) as a function of high
energy ball milling time. The amount of internal-strain induced during ball milling can vary with
many experimental factors. We found that if the initial particle size distribution is controlled by
sieving, the amount of powder being ball milled is kept constant, as well as the milling media and
size of the ball milling vial, the internal-strain versus ball milling time trend can be reproduced
within experimental uncertainty, as can be seen by comparing the two trials in Figure 4.10.

Figure 4.10 shows the variability seen if all of the mentioned experimental parameters are not
controlled. Nevertheless, the speeds of sound correlate with measured internal strain regardless of
ball milling conditions (Figure 4.7b).

Figures 4.10a and b also show that internal-strain increases with ball milling time until a plateau
is reached at approximately one to two hours depending on previously mentioned details regarding
the ball milling procedure. This type of plateau is commonly observed in powder metallurgy, and
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is sometimes followed by a decrease in internal strain [142].

X-Ray diffraction and analysis

X-Ray data collection. X-Ray diffraction was conducted on a STOE STADI-MP with pure Cu
K-α1 radiation (Figure 4.11). Pre-pressed powders were measured in transmission mode (Debye-
Scherrer geometry) and pressed pellets were measured in reflection mode (Bragg-Brentano geome-
try). A NIST 640e silicon standard was used to calibrate the peak position, and NIST 660c LaB6

standard was used to characterize the instrumental peak broadening. The instrumental broadening
is shown in relation to the peak broadening of a typical PbTe sample in the inset of Figure 4.11a,
where the 2θ = 71.8o LaB6 peak is normalized in intensity and position for comparison to the PbTe
peak. This shows that the instrument resolution in peak width is sufficient for particle size and
internal-strain analysis. Since strain information is contained primarily in high angle reflections,
data was collected up to 2θ = 110o for powders in transmission mode and 2θ = 130o for pellets in
reflection, with sufficient counting time to fully resolve the high angle peaks.

Reitveld refinement and evidence of 〈110〉 dislocations. GSAS II was used to conduct
Reitveld refinements [143]. An instrument parameter file was constructed in GSAS II by refining the
LaB6 standard, with no sample size or microstrain broadening included. The instrument parameter
file was not changed durning refinement of PbTe samples. When refining PbTe (Fm3̄m) samples,
the lattice parameter and sample position were first refined separately and then together. Then
the particle size was set to its maximum (10µm) and microstrain was refined. Since significant
anisotropic peak broadening was observed in all samples (peak width is not a smooth function of
θ) the generalized anisotropic strain model was used in GSAS II to describe the internal strain,
analogous to that used by Christensen et al. [144] in JANA2006. This model allows for two
independent strain parameters, S400 and S220, and a typical result is shown as a strain surface
plot in Figure 4.11b. This strain model shows that the crystal is less strained in the principle
crystallographic directions, as observed by the ‘dimples’ along the x, y, and z directions of Figure
4.11b. Additionally, this is reflected in the raw peak fits shown in Figure 4.11c, as well as the
aniostropic strain parameters in which all samples show, 2S400 < S220. This type of strain state is
consistent with that of a dislocation with a Burgers vector in the 〈110〉 direction, as shown in Figure
4.11d. This dislocation line points into the page and the Burgers vector is rotated 45o from the
principle directions, such that there is a zero strain node in the σyy and σxy components of the stress
tensor in the principle crystallographic directions [58]. This data suggests that the dominant defects
inducing the internal strain are dislocations with Burgers vector equal to (a/2) 〈110〉, which are
known to be a low energy dislocation type in PbTe [58]. Finally, the size was refined separately and
then together with strain resulting in no significant contribution to peak broadening from particle
size effects. Then all previously refined parameters were refined together (instrument parameters
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Figure 4.11: a) Characteristic example of X-ray diffraction data and Reitveld refinement results. Circles
are observed data of the PbTe sample, the red line is the calculated intensity obtained via refinement with
GSAS II, and the blue line is the difference of the two. The inset shows a detailed view of a high angle
peak, where the diamonds are data from the LaB6 660c NIST standard and the purple line the calculated fit.
This shows that the instrument line width resolution is sufficient for strain analysis, and verifies the quality
of the refinement specifically in the context of peak broadening. b) Strain contour plot resulting from the
generalized strain model, which accounts for the anisotropic peak broadening. c) Single peak fits showing
how the h00 type peaks are sharp compared to the rest of the reflections. d) Illustration of a dislocation
with a Burger’s vector of a2 〈110〉. The extra half plane is shaded in grey, and the dashed lines show nodes
in the σyy and σxy components of the stress tensor.

still fixed) and the resulting fit is shown in Figure 4.11. The reproducibility of internal strain analysis
was verified by refining five independent X-ray scans on the same batch of powder. The standard
deviation of internal strain measurements had a value that was 3% of the mean. No change in the
lattice parameter was measured.

Williamson-Hall peak broadening analysis. To analyze the internal strain of the pressed
pellets, select peaks were fit using a split psuedo-Voigt function

I(2θ) = Ihkl[η L(2θ − 2θ0)) + (1− η)G(2θ − 2θ0)]. (4.7)

The Lorenzian full width half max (σ) was allowed to be different on the left and right side of the
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peak maximum,

L(2θ − 2θ0) =
(σ/2)2

(2θ − 2θ0)2 + (σ/2)2
.




σ = σL , 2θ ≤ 2θ0

σ = σR , 2θ > 2θ0

(4.8)

The Gaussian peak shape function is given by

G(2θ − 2θ0) = exp

(
−π(2θ − 2θ0)2

β2
G

)
, (4.9)

where βG is the Gaussian peak width. The θ dependence of the peak width was analyzed via the
Williamson-Hall method. While the same conclusions can be made by analyzing Reitveld refinement
results of the pressed pellets, the Williamson-Hall method was used because it resulted in a lower
analysis related error (presumably because of the asymmetric peak shapes which are captured by
our peak fits and are not in GSAS II). Additionally, while the results presented in Figure 4.11
suggest that the primary strain inducing defect is a dislocation with Burgers vector (a/2) 〈110〉, the
Williamson-Hall approach used on the pellets is model non-specific and no conclusion about the
microscopic origin of the internal strain is required.

Individual peaks were fit using the split pseudo-Voigt profile function (Eq. 4.7) the integral breadth
(area/height) of the fitted peak is given by βmeas. The instrument integral breadth, βinst was
determined by conducting the same fitting procedure on a NIST 660c LaB6 standard. The sample
full width at half maximum was then calculated by β2 = β2

meas − β2
inst and converted from degrees

into radians for analysis. The Williamson-Hall function was used to determine the relative amounts
of internal strain in each pellet sample

β cos θ = (CεXRD) sin θ +
λ

dXRD
, (4.10)

where β is the instrument corrected full width half maximum (in radians), θ is the angle of the
diffraction peak, λ is the wavelength of the radiation, C = 4 is a constant related to the nature of
the internal strain [122, 121, 120], and εXRD and dXRD are the internal strain and crystallite domain
size determined via this Williamson-Hall method. As can be seen in Figure 4.11c, the {h00} type
peaks were significantly sharper than the other peaks [130, 144] and were thus excluded from the
Williamson-Hall analysis. The resulting least squares fits are shown as lines in Figures 4.7a and
4.11c.
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Table 4.2: Elasticity data for the samples shown in Figure 4.5. Samples can be identified by the labeled vs

values.

vS (m s−1) vL (m s−1) vT (m s−1) B (GPa) µ(GPa) ν

1870 3031 1676 44.1 22.8 0.28
1780 2877 1603 38.6 20.4 0.27
1740 2738 1562 33.4 19.2 0.26
1860 3026 1673 43.4 22.4 0.28
1820 2935 1637 39.8 21.1 0.27
1770 2738 1599 31.7 19.8 0.24

4.2.5 Elastic properties

The elastic constants are computed with the assumption that the material measured can be described
as an isotropic elastic solid, as explained in Hirth and Lothe section 2-4 [58]. This assumption holds
since PbTe is cubic and the polycrystal is randomly oriented, as determined from XRDmeasurement.
The bulk modulus is thus given by [145]

B = ρ

(
v2

L −
4

3
v2

T

)
, (4.11)

where ρ is the mass density of the material. It is recommended that this is measured geometrically
rather than the Archimedes method which is known to over estimate the materials density. The
shear modulus is calculated as

µ = v2
Tρ . (4.12)

The Young’s modulus is calculated as

E =
9Bµ

3B + µ
. (4.13)

The Poisson’s ratio is calculated as
ν =

E − 2µ

2µ
. (4.14)

Table 4.2 shows elastic properties characterized by ultrasound, bulk density measurements and Eqs.
4.11 to 4.14.

Thermal diffusivity and conductivity

Thermal diffusivity was measured using a Netzch laser flash analysis (LFA) system. The diffusivity
measurements, Dκ [m2s−1], were combined with the heat capacity of PbTe [103], cp [JK−1m−3] =

NR{3.07 + 4.07 × 10−4(T − 300)}/M (where N is the number of atoms per primitive unit cell,
R [JK−1mol−1] is the gas constant, and M [kgmol−1] is the molar mass of the primitive unit cell),
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Figure 4.12: Scanning electron microscopy images of fracture surfaces, with the average grain size determined
via the linear intercept method indicated. Data points are consistent with Figures 4.5 and S4 of [100], and
the scale is the same for all six images. The thermal conductivity measured does not systematically trend
with the materials grain size.

and the sample density, ρ [kgm−3], to calculate the thermal conductivity, κ = Dκcpρ [Wm−1K−1].
Electrical conductivity measurements confirmed that the electronic thermal conductivity is less than
1% of κ, so the thermal conductivity measured is essentially equal to the lattice thermal conductivity,
κ ' κL (bipolar thermal conduction is negligible in the temperature range considered for undoped
PbTe).

Grain size from SEM

Figure 4.12 shows scanning electron microscopy (SEM) images of three samples, which were used
to determine the grain size via the lineal intercept method [146]. The images were obtained on a
Hitachi S-4800 in the secondary electron mode, with a beam voltage of 2 kV. This method gives an
estimate of the grain size which is accurate to approximately 25%.

Thermal transport model for nanocrystalline Si

The thermal transport model shown Figure 4.9a is identical to that shown in Figure 2 of Ref.
[43] and Figure 8a of Ref. [39] except that the phonon-phonon relaxation time was formulated to
maintain its dependence on phonon velocity [72],

1

τpp(ω)
=
c1ω

2T

v3
s

e−c2vs/T . (4.15)
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Table 4.3: Material parameters used in the thermal transport model shown in Figure 4.9a, based on Eqs.
2.22, 2.18, 4.15, and 3.14.

Material Parameter Value
c1 [m3K−1s−2] 5.3× 10−8

c2 [K s m−1] 2.9× 10−2

Grüneisen parameter, γ 1

Poisson’s ratio, ν 0.27

Volume of per atom, V
[
Å3
]

20

Atoms per primitive unit cell, N 2

GB Burger’s vector, b = (V N)1/3
[
Å
]

4.07

Characteristic length of GB structure, D [nm] 3
Average grain size [129], d̄ = 3/n1d [nm] 42

The coefficients here are related to the coefficients in Ref. [39] as C1 = c1/v
3
s and C2 = c2vs.

Phonon-grain boundary scattering was included using the relaxation time derived in Ref. [39]
which describes a phonon being perturbed by the grain boundary rotation and localized strain field
and is given in Eq. 3.14. The total relaxation time is calculated according to Matthiessen’s Rule:
τ−1 = τ−1

pp + τ−1
gbs.

The speed of sound for a Si single crystal is slightly different here than that used in Ref. [39]
because we are utilizing speeds of sound obtained by low-T heat capacity rather than elastic moduli.
Intrinsic phonon-point defects scattering (natural vacancies and isotopes), as well extrinsic point
defect scattering due to mass contrast and localized strain fields (P substituted on a Si site) were
determined to be negligible [147]. From the measured carrier concentration of the nanocyrstalline
Si sample [129], the fraction of P on Si sites was only f = 0.002, and the mass difference and change
in atomic radii of P and Si are relatively small. Additionally, phonons scattering on conduction
electrons, which mainly effects low frequency phonons, was neglected since the relaxation time of low
frequency phonons is already dominated by phonon GB scattering [148]. The material parameters
utilized for the model are shown in Table 4.3.
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Chapter 5

Phonons in complex crystals: beyond the phonon gas

model

Thus far we have focused on phonon heat conduction within the phonon-gas channel. However,
there is a growing body of theoretical and experimental work which suggests that in amorphous
materials the phonon-gas model is incomplete and that contributions from the diffuson channel
are important [11, 12, 14]. As we show here the phonon-gas model falls short even in crystalline
materials with complex crystal structures.

Due to the open debate regarding the language surrounding vibrational thermal conductivity,
phonon and ‘other than phonon’ heat conduction (i.e. propagons, diffusons, and locons), we ex-
plicitly state our nomenclature as follows. We refer to phonons as all types of harmonic normal
modes of vibration. More explicitly, phonons are solutions to the equation of motion when har-
monic interatomic forces are assumed (Eq. 2.15). These phonon eigenstates are often visualized
using a phonon band structure (Figure 2.2a). Usually in simple crystals, at a given wavevector k

the phonon branches (polarizations) s are sufficiently separated in energy that they don’t interact,
even after the lines are broadened due to perturbations such as phonon-phonon interactions (Figure
2.2d). In this case, phonons can be viewed as wave-packets propogating at their group velocity
vg(ks), carrying an energy ~ω(ks). This is the common phonon gas-model, and we will refer to this
as phonon conduction through the phonon-gas channel κph (Eq. 3.30 of Hardy [11]). However, this
is not the only channel through which phonons can conduct heat. If at a given wavevector k the
phonon branches s are packed closely together in energy, after broadening the normal modes will
overlap in k-space and energy and begin to mix. This mixing of normal modes opens up another
conduction channel where thermal energy can conduct through a diffusive random walk process
(Eq. 3.31 of Hardy [11]). Normal modes conducting heat through this channel in harmonic glasses
have therefore been termed ‘diffusons’ [10]. We will refer to this as phonon conduction through the
diffuson channel κdiff .
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5.1 Introduction

The foundation for the theory of thermal transport due to atomic vibrations was established in 1963
by Robert J. Hardy [11]. His formulation of the heat current vector, ji, is very general and captures
all conduction channels for the thermal conductivity due to atomic vibrations κvib. One main result
of his work is an expression for ji which requires only the positions, velocities, and potential energy of
all atoms in the system (Eq. 2 of DeAngelis et al. [14]). This form of ji is commonly implemented
with molecular dynamics (MD) simulations and, together with the Green-Kubo formula, gives
an expression for the material’s thermal conductivity due to atomic vibrations, κvib (Eq. 1 of
DeAngelis et al. [14]). This combination of molecular dynamics, Hardy’s expression for ji, and the
Green-Kubo formula is particularly effective at studying the thermal conductivity of amorphous
and defective materials. However, since the results of this methodology comes, in essence, directly
from time dependent atomic displacements, velocities, and potential energies, it can be difficult to
interpret results, build intuition, and establish materials design principles for amorphous, defective
and complex solids. Consequently, this methodology acts more as a computational experiment than
a mechanistic model.

There has been considerable progress in analyzing MD results and classifying the nature of heat
carrying vibrational modes in a descriptive manner. In the pioneering work of Allen and Feldman
[12, 10] the taxomony of propagons, diffusons, and locons was provided after detailed examination of
amorphous silicon simulations. More recently, the method of Green-Kubo modal analysis has been
developed which allows one to extract mode specific information contained in a molecular dynamics
simulation [149, 150, 14]. These simulations strongly suggest that in amorphous materials, thermal
conductivity should be dominated by the diffuson conduction channel, and the phonon-gas model
is largely incomplete.

There have been many analytical models proposed for the thermal conductivity of amorphous and
disordered materials [151, 131, 152]. Many of them are essentially based on random walk theory,
which requires a step distance, attempt frequency, probability of a successful energy transfer, and an
amount of heat being transferred during the step. The main difference between models is treatment
of the jump distance, and/or the attempt frequency. It seems that these analytical models were
attempting to find an expression which captures to behavior of heat conduction through the diffuson
channel, as defined in Eq. 2.7.

We approach the same problem, determining limitations of the phonon-gas model, by examining
the vibrational properties of complex crystals. In a crystal, there are always 3 acoustic phonon
branches and 3(N − 1) optical branches, where N is the number of atoms in the primitive unit cell.
Here, we define an acoustic branch as one whose energy goes to zero, ~ω → 0, as the magnitude
of its wavevector goes to zero, k → 0, and an optical branch is one that has non-zero energy as
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Figure 5.1: Brillouin zone folding promotes phonon conduction through the diffuson channel. Schematic
illustration of the folding of one phonon branch when the number of atoms per unit cell is increased from one
to two and four. A commonly cited effect of zone folding is that it reduces the average phonon group velocity,
vg = dω/dk, of the phonon-gas channel. However, when the diffuson conduction channel is considered,
in addition to the phonon-gas, one recognizes that zone folding increases the number of branches s and
decreases their energy separation. Upon the broadening of these phonon branches this will promote normal
mode mixing, and in turn increase thermal conduction through the diffuson channel.

k → 0. The rule stated above, which governs the number of acoustic and optical phonon branches
can be understood through the concept of Brillouin zone folding which is schematically illustrated in
Figure 5.1. For simplicity we show the one dimensional case which has 1 acoustic and N − 1 optical
branches. When considering only the phonon-gas conduction channel (Eq. 2.5), the primary effect of
zone folding is a reduction of the phonon group velocity vg, aside from any phonon scattering phase
space effects. However, as discussed in Chapter 2.1 (Eqs. 2.5 and 2.7) the phonon-gas channel is not
the only avenue in which phonons can conduct heat. Additionally, when the phonon modes become
very close, or overlap, in energy and k-space they can conduct heat diffusely through a normal mode
mixing (tunneling) processes. In a perfectly harmonic solid, we typically think of phonon modes as
non-interacting (though this isn’t explicitly true when the material is under a temperature gradient
[12]). Mathematically this can be expressed as εαi (ks)εαi (ks′) = 0 for s 6= s′, where εαi (ks) is the
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Figure 5.2: a) The body centered Yb14MSb11 tetrahedral crystal structure containing 208 atoms (I41/acd,
no. 142). There are 104 in the primitive unit cell. Yb is shown in blue, Sb in green and M = Mn, Mg
are contained in the red Sb4 tetrahedra. b) The reciprocal lattice and first Brillouin zone. The harmonic
vibrational band structure is shown along the Γ−N and Γ−X high symmetry lines.

eigenvector of phonon mode ks (Eq. B.0.11). However, anharmonicity will broaden the phonon line
widths causing modes that are not necessarily orthogonal to overlap. In most simple crystals this
effect is negligible because non-orthogonal phonon modes are typically spaced in energy such that
they do not mix, even after anharmonic broadening. However, in complex crystals and amorphous
materials non-orthogonal modes can lie close together in energy resulting in a non-negligible amount
of normal mode mixing after anharmonic line broadening, resulting in heat conduction through the
diffuson channel. In practice, when this model is implemented computationally the phonon modes,
which are theoretically δ-functions in energy, must be given some width regardless of anharmonicity
being included or not. Allen, Feldman et al. achieve this by utilizing a Lorentzian peak with a width
of 0.043 meV (10 GHz) which is larger than the typical inter-mode spacing (ω(ks)− ω(ks′) where
s′ = s ± 1) [12, 153]. If there is no means to transfer thermal energy between phonon eigenstates,
local thermodynamic equilibrium can not be achieved, and temperature and therefore a thermal
conductivity (as defined through Fourier’s law) cannot be defined.

The Yb14MSb11 system whereM= Mg,Mn is a prime candidate to study normal mode mixing and
non-phonon-gas type thermal conduction, due to its very complex crystal structure with 104 atoms
per primitive unit cell (Figure 5.2a). Additionally, there are detailed studies of the vibrational
thermal conductivity, which show a very low magnitude of 1 W/mK near room temperature and
a unique temperature dependence for crystalline materials [154, 155, 156]. In crystalline materials
around room temperature if the phonon-gas channel dominates one would expect a κvib ∝ 1/T

temperature dependence, however in the Yb14MSb11 system κvib is approximately T-independent
which one might suspect is due to a κdiff -dominated thermal conductivity. This system has a
very complex crystal structure with 104 atoms in its primitive unit cell . Additionally, its has a
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low vibrational thermal conductivity with a very unusual temperature dependence for crystalline
materials.

The Yb14MSb11 material system has a high thermoelectric figure of merit and is being considered
by NASA-JPL for next generation radio-isotope thermoelectric generators for space exploration
[154]. Additionally, this system is a rare case of a dilute ferromagnetic semiconductor making it of
potential interest to spintronic technologies [157].

Here, we compare DFT-based lattice dynamics simulations and inelastic neutron scattering ex-
periments which suggest that heat conduction in this system should indeed have a considerable
contribution from the diffuson channel. In doing so we provide an intuitive physical picture for
diffuson conduction which is important for material’s design of complex, amorphous and highly
defective systems.

5.2 Methods

5.2.1 Computational methods

The computation of harmonic interatomic force constants was executed1 using density functional
theory (DFT) in the Vienna Ab initio Simulation Package (VASP) and Phonopy. First, the opti-
mization of the electronic and ionic structures of Yb14MgSb11 and Yb14MnSb11 were performed with
periodic DFT in VASP [158] with strict convergence criteria. For electronic and structural optimiza-
tion, a criterion of ∆E < 10−7 and ∆E < 10−5 eV per cell was used, respectively. The projector
augmented-wave method [159] with a plane-wave cutoff of 520 eV and the Perdew–Burke–Ernzerhof
(PBE) functional were used during these calculations [160]. Furthermore, the optimizations of the
primitive unit cells were performed with a 4x4x4 k-point mesh. Since Mn in this structure is ex-
pected to exhibit magnetic properties, we utilized a ferromagnetic model for Yb14MnSb11 during
the optimization with magnetic moments on all Mn atoms in the primitive unit cell.

Once the optimized ionic and electronic stuctures were obtained, the harmonic interatomic force
constants (IFCs) were computed using the finite displacement method as implemented in Phonopy
[161, 162]2, with a displacement of 0.01 Å and with the help of the conventional cell as the supercell.
The forces for this evaluation were calculated at the Γ-point. Again, a ferromagnetic model was
used for Yb14MnSb11.

These harmonic IFCs were implemented in a lattice dynamical approach (Appendix B) to obtain the
phonon band structure. For the computation of the vibrational density of states, an 8x8x8 uniform

1DFT obtained harmonic IFCs were provided by J. George and G. Hautier of Université catholique de Louvain.
Post-DFT computations were conducted by the author.

2https://atztogo.github.io/phonopy/
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Figure 5.3: The dynamic structure factor (scattering function) shown as a function the magnitude of the
scattering wave-vector (|Q|) and energy (E), S(|Q|, E). Polycrystalline samples of Yb14MgSb11 with 104
atoms per primitive unit cell, and Al with one atom per primitive unit cell are shown for comparison. In
polycyrstalline Al, clear phonon branches are observed that originate from the diffraction peaks at E =
0 meV. These isolated phonon branches are not easily observed in Yb14MgSb11, and through this qualitative
comparison one may suspect that the character of atomic vibrations in Yb14MgSb11 is not consistent with
the phonon-gas picture. The isolated and distinguished branches in Al indicate that the phonon-gas picture
holds.

k-mesh and the tetrahedron method was used to approximate the integration over the Brillouin
zone. Additionally, the DOS was convoluted with a 1.5 meV full width half max Gaussian function
which is consistent with the instrument resolution of the inelastic neutron scattering experiments.

5.2.2 Synthesis

Cylindrical pellets of polycrystalline Yb14MgSb11 and Yb14MnSb11 with final dimensions of approx-
imately 12 mm in diameter and 15 mm in height were synthesized as follows. Raw elements were
weighed in stoichiometric amounts in an Ar filled glove box and sealed in a ball mill vial. High
purity Mn, Mg, and Sb were used as received from suppliers. However, the Yb was arc melted five
times to further purify it prior to synthesis. This step was critical to achieve phase pure samples.
These raw elements were ball milled together for 5 hours, re-mixing the constituents in the glove box
every hour. The resulting powder was pressed at 900 C for 20 minutes under 45 MPa of pressure
in a uniaxial hot press.
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5.2.3 Inelastic neutron scattering

Inelastic neutron scattering experiments were conducted on the ARCS spectrometer at the Spalla-
tion Neutron Source (SNS), with incident neutron energies of 45 meV and a sample temperature of
300 K. The samples were dense polycrystalline cylindrical pellets approximately 12 mm in diameter
and 15 mm in height. All data are first represented as a function of neutron energy transfer, E,
and momentum transfer, |Q|, where |Q| = 4π sin(θ)/λ, where θ is the scattering angle and λ is the
neutron wavelength. The energy resolution is approximately 1.5 meV. An example of the scattering
function (dynamic structure factor) S(|Q|, E) data obtained via the program Mslice in the Data
Analysis and Visualization Environment (DAVE) [163] is shown in Figure 5.3. Due primarily to
the large neutron scattering cross-section of Yb, neutron absorption corrections were included in
the analysis as implemented by Mslice. This data was used to compute the vibrational density of
state by first integrating S(|Q|, E) from |Q| = 4 to 8Å−1, obtaining S(E). Data at the highest
scattering angles, from 120 to 136o were masked and data above 36 meV were removed to avoid
any instrument related artifacts in S(|Q|, E). The background was subtracted from S(E) and the
data was converted from arbitrary units to counts by recognizing that the intensity and error bars
obtained from Mslice are An and A

√
n, where n is counts and A is an arbitrary scaling factor.

After these corrections, S(E) was converted to the vibrational density of state g(E) by removing
the elastic scattering peak and multi-phonon contributions in the program isdos10.

5.3 Results and discussion

The phonon band structures of Yb14MgSb11 and Yb14MnSb11, obtained from DFT based lattice
dynamics are shown in Figure 5.4. The many crossing points and close proximity of bands suggests
that there should indeed be a significant diffuson channel contribution to κvib. Here, we examine
the computed vibration density of states and compare this to inelastic neutron scattering data.

The atom projected and total vibrational density of states (DOS) are shown next to the band
structures which have been convoluted with a 1.5 meV Gaussian which is consistent with the in-
strument broadening observed in the inelastic neutron scattering experiments. Starting at the top,
Yb14MgSb11 is expected to have very flat high energy optical modes at around 30 meV, which are
dominated by Mg character with a small amount of Sb character. This can be attributed to the
Mg atoms oscillating within their Sb4 tetrahedron cage at a high frequency with little interaction
with the rest of the atoms. The same type of behavior is expect in Yb14MnSb11, except for a shift
in energy to around 23 meV and the modes have been split in energy due to the ferromagnetic
properties of the Mn atom. Between approximately 3 and 17 meV, there are expected to be many
flat optical modes spaced very closely in energy. The modes of lower energy are dominated by Yb
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Figure 5.4: The phonon band structure, and vibrational density of states (DOS) computed from DFT-based
lattice dynamics for a) Yb14MgSb11 and b) Yb14MnSb11. For the DOS, an 8x8x8 uniform k-mesh and the
tetrahedron method was used to approximate the integration over the Billouin zone. Additionally the DOS
was convoluted with a 1.5 meV full width half max Gaussian function which is consistent with the instrument
resolution seen in the inelastic neutron experiments.

character and the modes near 17 meV are dominated by Sb character, which may have been ex-
pected from atomic mass considerations. The number of optical branches can be expected from the
concept of zone folding shown in Figure 5.1. With 104 atoms per primitive unit cell, Yb14MSb11

has 309 optical modes. What may not have been obvious without the DFT-based lattice dynamics
simulations is their close proximity in energy, which as we discuss above is important for diffuson
channel conduction. Finally, the acoustic modes (as defined in this context) only extend up to 2.5
to 3 meV.

These results are now compared to inelastic neutron scattering. However, before a direct comparison
can be made the atom projected density of states (gi(E)) must be weighted by their neutron
scattering strength, resulting in the neutron weighted density of states

gn0(E) =

∑
iNi(σi/Mi)gi(E)∑

iNi(σi/Mi)
. (5.1)

where Ni is the number of atom of species i in the formula unit, σi is its neutron scattering cross-
section, and Mi is its atomic mass. The results of this comparison are shown in Figure 5.5. The
experimental data and computational predictions are normalized and the energy axis is scaled for
direct comparison. The shift in energy is expected due to the use of the PBE functional which is
known to slightly over estimate lattice parameters and slightly under-estimate elastic moduli and
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Figure 5.5: Neutron weighted density of states in a) Yb14MgSb11 and b) Yb14MnSb11 measured via inelastic
neutron scattering at 300K on the ARCS spectrometer at the SNS. The experimental data and computational
predictions have been normalized and the energy axis has been shifted for comparison. The computation
predictions shown here are based on the results shown in Figure 5.4. As can be seen the simulations agree
well experimental results, particularly for phonon modes below 20 meV.

vibrational mode energy. We also note that temperature was not included in the lattice dynamics
simulations and the experimental data was taken at 300 K. The standard error for the experimental
data is shown by the error bars, which is equal to or smaller than the data point size. The data
agree well with the computational prediction, especially below 20 meV. In particular we note the
agreement in the magnitude and shape of the peak at around 8 meV and modes higher in energy.
While the Mg peak seems to be stronger than the prediction, the relative position in energy seems
to be well represented. The position of the Mn peaks is approximately 2.5 meV lower in energy than
the prediction, which is presumably related to the ferromagnetic model used. Regardless, of these
relatively minor discrepancies we believe this result supports the computational results. The density
of states analysis lends confidence in the band structure results shown in Figure 5.4, which suggest
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that the dense optical modes between 3 meV and 17 meV will exhibit significant heat conduction
through the diffuson conduction channel. The typical energy spacing between the optical phonon
modes is on the order of 0.05 meV meaning that significant normal mode mixing after anharmonic
broadening is expected, which will enable heat conduction through the diffuson conduction channel.

In some cases, materials can behave qualitatively differently in terms of crystallographic and vibra-
tional properties. We conclude that in complex crystalline materials with many atoms per unit cell,
the phonon-gas model alone is not expected to fully explain the thermal properties. After examining
the vibrational properties of the Yb14MSb11 system in detail by computational and experimental
methods, we suggest that phonon band proximity should be used as a metric to predict the im-
portance of the diffuson conduction channel. This provides a simple and useful material design
metric which can be used to predict the breakdown of the phonon-gas model, and the transition
from crystalline-like (phonon-gas channel) to amorphous-like (diffuson channel) heat conduction.
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Chapter 6

Optimizing thermoelectric transport of CoSb3 through

the controlled use of defects

The previous chapters in this thesis have focused on the materials physics of heat conduction in
defective and complex crystals. The materials systems examined were treated mainly as case studies
to test our understanding of underlying physical mechanisms. This chapter contains a more applied
materials design strategy, where thermal and electrical transport of the CoSb3 Skutterudite system
is optimized by the controlled use of defects. Skutterudites are one of the most promising material
systems for TE power generation applications in the intermediate temperature range of 600−800 K,
which is a common temperature for industrial and automotive waste heat sources.

Skutterudite materials have a crystal structure built up of CoSb6 octahedra and Sb4 rings which
together form a caged structure as shown in Figure 6.1. In addition they are semiconductors which
can be doped in a controlled manner, often by filling the Sb-icosahedron cages. For a more in-depth
structural discussion, the reader is referred to a review by Uher [164]. In brief, Sb forms polyanionic
Sb4 rings. Using a Zintl description, each Sb has a formal charge of -1 forming two covalent bonds
and giving the ring a formal charge of Sb4−

4 . The Sb4 ring is not necessarily a square, having two
longer and two shorter bonds of a rectangle. The remaining two Sb lone pairs coordinate to Co3+

to form CoSb6 octahedra. These octahedra either share their vertices via one Sb atom or via one
bond of the Sb4 ring.

The vibrational and thermal properties of CoSb3 have received much attention. The relatively
complex crystal structure is effective at scattering high frequency phonons, which along with the
relatively low speed of sound (average speed of sound of approx. 2900 m/s) results in CoSb3 having
low intrinsic vibrational thermal conductivity. Additionally, filling the cage is known to result in
a profound reduction in κph. Further reduction of thermal conductivity requires grain boundary
engineering beyond simply reducing the grain size. In Section 6.1 it is experimentally demonstrated
that modifying n and p type CoSb3 grain boundaries with graphene dramatically increases thermal
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Figure 6.1: Structural representation of Yb-filled CoSb3 (shown with the origin shifted by -1/4[111]) with
Co in blue, Sb atoms in gold, and Yb atoms (filler) in light blue. Sb forms Sb4 rings that coordinate to Co.
(b) Structural motif of CoSb3. Two octahedra share either one Sb or an edge of an Sb-Sb ring. Star labeled
atoms represent the motif (b) in context within the structure (a).

boundary resistance with negligible effects on electric transport, resulting in improved zT and device
conversion efficiency.

N-type CoSb3 is known to exhibit superb electrical transport and high TE power factors (σα2).
While this material has a long history, it has only recently been shown that its high power factor
stems from a complex electronic band structure resulting in a Fermi surface with many valleys at
high doping [165]. In Section 6.2, we reveal that this complex electronic band structure arises from
the unique bonding chemistry in CoSb3. Additionally, extrinsic doping with point defects is shown
to promote the convergence of the many valleys in the electronic band structure which promotes
thermoelectric power factor.

6.1 Graphene modified grain boundary complexions1

The reduction of lattice thermal conductivity by grain boundary engineering, without deterioration
of electron transport, is an effective strategy to increase thermoelectric efficiency. Grain boundaries
add additional degrees of freedom when engineering materials; their structure and chemical compo-
sition become critically important when explaining a materials transport properties. We show here
that not all grain boundaries are the same, and not only can one engineer grain size but also orien-
tation and coherency of the interfaces. Even more possibilities arise as one considers that the grain
boundary region, or complexion, can also be modified with impurity atoms. Being only a single

1The content in this section was published by Zong* and Hanus* et al. in Ref. [166] (* contributed equally).



102

atomic layer, graphene (or another two-dimensional material) that coats or wraps grains can mod-
ify grain boundary complexions in ways fundamentally different than traditional grain boundary
phases.

Here, we show that reduced graphene oxide (rGO) increases the grain boundary thermal resistivity
by a factor of 3 to 5 compared to grain boundaries without graphene. Wrapping even micron sized
grains with graphene leads to such a significant reduction in the thermal conductivity that a high
thermoelectric figure of merit zT = 1.5 was realized in n-type YbyCo4Sb12, while a zT of 1.06
was achieved in p-type CeyFe3CoSb12. A 16 leg thermoelectric module was made by using n- and
p-type skutterudite-graphene nanocomposite that exhibited conversion efficiency 24% higher than
a module made without graphene. Engineering grain boundary complexions with 2-D materials
introduces a new strategy for advanced thermoelectric materials.

6.1.1 Material synthesis

CoSb3 based skutterudite materials with rGO modified grain boundary complexions were synthe-
sized by a solution based powder processing procedure, followed by densification into sample pellets
using spark plasma sintering (SPS). We provide a general description of the procedure used to pro-
duce both n- and p-type material and refer the reader to Refs. [167] (n) and [166] (p) for further
details.

The composition of the p-type material is Ce0.85Fe3CoSb12/y, where y represents the vol% of rGO
(y = 0, 0.56, 1.4, 2.8). The composition of the n-type samples is Yb0.27Co4Sb12/y vol% rGO (y =
0, 0.72, 1.8, 3.6). High purity elements were used as raw material, which were stoichiometrically
weighed in an Ar atmosphere glove box and sealed in carbon coated quartz tubes. The sealed quartz
tubes were then heated to 1373 K and held for 24 h and quenched followed by a 7 day anneal at
923 K. The obtained ingots were crushed into fine powders. Purified natural graphite (SP-1, Bay
Carbon) was use to synthesize graphene oxide (GO) according to the improved Hummers method.
Next, 1.5 g of powder was dispersed in 200 ml deionized water, then added with 0.05 mg/ml GO
water suspension solution dropwise, followed by ultrasonic mixing for 30 min. The mixture then
underwent vacuum filtering and drying at 363 K in Ar-5 vol% H2 gas flow for 4 h. The resultant
material was regrinded into fine powder. The composite powders were then loaded into a graphite
die and consolidated by spark plasma sintering (Sumitomo SPS-2040) in vacuum at 873 K for 15
minutes under a pressure of 55 MPa, yielding fully densified bulk disk-shaped samples.

6.1.2 Structural characterization

Powder X-ray diffraction patterns of the rGO-wrapped samples at room temperature are indexed
on the CoSb3 structure with no rGO or other impurity phase observed within detectability limits
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Figure 6.2: High angle annular dark-field, scanning transmission electron microscopy (HAADF-STEM) image
of the p-type Ce0.85Fe3CoSb12/0.56 vol% rGO sample. Right Insets: local energy spectrum analysis for Sb,
Fe, Ce, Co and C respectively.

(see Figure S1 of [166]). Raman spectroscopy analysis before and after the SPS procedure shows an
increase in the average size of carbon sp2 domains, indicating an in-situ reduction form GO to rGO
during the SPS procedure (see Figure S2 of [166]). To obtain relatively high resolution composition
data, high angle annular dark-field scanning transmission electron microscopy was conducted on
the rGO wrapped skutterudite samples. Figure 6.2 show the results for the Ce0.85Fe3CoSb12/0.56

sample and reveals that the rGO was indeed incorporated into the grain boundaries. The yellow
arrows in the Ce local energy spectrum show Ce rich precipitates. This observation along with
electron energy dispersive X-ray spectroscopy (EDS) analysis (Figure S6 of [166]) indicates that the
oxygen from the GO likely reacts with Ce during the SPS process forming CeO2 precipitates.

In another study by Tang, Hanus et al. the solubility limits of Ce in CoSb3 are examined by
experimental phase boundary mapping [168]. To validate the bulk composition within the grains of
the polycrystalline samples, a nano-tip sample was extracted which contained a grain boundary for
atom probe tomography (APT) analysis. The ∼ 100 nm diameter needle-like sample was prepared
using a dual-beam focused–ion (Ga+) beam microscope (FEI Helios Nanolab) equipped with a
micromanipulator (similar to the lift-out method) [169]. APT experiments were conducted on a
Cameca LEAP-4000X Si equipped with a picosecond ultaviolet laser (wavelength 355 nm). Futher
details on the sample preparation and exmpimental procedure can be found in Ref. [168]. APT
has the unique capability of determining the precise composition at a nm scale resolution. Figure
6.3 reveals that in Ce filled CoSb3, Ce atoms accumulate at the grain boundaries. This APT
observation, along with the HAADF-STEM observations in Figure 6.2 (yellow arrows), suggests
that excess Ce at the grain boundaries reacts with the O during the reduction of GO to rGO,
forming CeO2 nanoprecipitates.
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Figure 6.3: Atom probe tomography (APT) analysis of the most heavily doped sample Ce0.2Co4Sb12. (a)
3D reconstruction of microtip containing a grain boundary. Ce atoms are displayed in red; Sb and Co atoms
omitted for clarity. (b) Concentration profile across the grain boundary and in the grain. The black dashed
lines show values measured by electron probe micro analysis (EPMA), and the error bars represent the
standard error,

√
c(1− c)/n, where c is the concentration and n is the number of atoms detected in each

data point bin.

6.1.3 Electric transport

The electrical conductivities (σ) of samples containing small amounts of rGO (y = 0.56 and 1.4
for p-type and y = 0.72 for n-type) are only slightly decreased (Fig. 6.4) compared to the samples
without graphene, indicating that thin layers of rGO (and potentially CeO2 precipitates) at grain
boundaries have minimal effect on electronic properties. This minimal effect on charge carrier
mobility (µ) is confirmed in Fig. 6.4b. Further increasing the rGO content leads to more noticeable
reduction in mobility when rGO content reaches 2.8 vol%. Likewise, the Seebeck coefficients (S)
and power factors (PF = σS2) as a function of temperature (Fig. 6.4) are essentially unchanged
for small contents of rGO. This is consistent with Hall effect measurements (Table S1 of Ref. [166]).
The p-type Ce0.85Fe3CoSb12 shows only a slight increase in hole concentration, which should result
from the generation of the small amount of CeO2 nano-precipitates.

6.1.4 Thermal transport

In order to determine the effect of the three-dimensional rGO network, a phenomenological model
for thermal conduction in these composite systems was constructed. This model was used to extract
a metric capturing the ensemble average interfacial thermal resistance, Rκ, for materials without
rGO and those containing an rGO network.

The total thermal conductivity (κ) contains contributions from charge carriers through electronic
(κe) and bipolar (κBP) conduction, and from atomic vibrations which we assume here to be dom-
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Figure 6.4: Temperature dependence of the (a) electrical conductivity, (b) carrier mobility, (c) Seebeck
coefficients, (d) power factors of p-type Ce0.85Fe3CoSb12/y vol% rGO samples (y = 0, 0.56, 1.4, 2.8) and
n-type Yb0.27Co4Sb12/y vol% samples (y = 0, 0.72) from Ref. [167]

inated by phonons (which here is denoted as κlat instead of κph), whereby, κ = κe + κBP + κlat.
We use room temperature data to extract Rκ where κBP is negligible. The Wiedemann–Franz law
is used to compute κe = LσT , with experimental σ values and L = 2 × 10−8 WΩK−2. Using this
procedure we measure the vibrational thermal conductivity κlat of the composite system which we
denote more explicitly as κcomp. This contains thermal conductivity through the bulk grain κbulk

as well as the boundary resistance Rκ = 1/hB, where hB is the interfacial thermal conductance. We
think of Rκ as including all aspects of the GB complexion for transport perpendicular to the inter-
face including effects between the skutterudite and graphene (interface effects) as well as thermal
resistance across the graphene. Below we present a simple thermal circuit model for extracting Rκ.
More characterization on this GB complexion (e.g. thermal transport across single GBs) would be
required justify a more detailed, mechanistic model.

First, we establish Rκ for regular CoSb3 GBs, both n- and p-type. The bulk thermal conductivity
κbulk is fit empirically along with a constant Rκ for samples without graphene of various grain sizes.
This κbulk will then include all the relevant phonon-phonon, electron-phonon, point defect scattering
processes, and potentially a contribution from the diffuson conduction channel. The complex crystal
structure and the presence of rattling interstitial point defects prevent a more sophisticated model
for κbulk. Here, we use a model of cubic grains with edge length d̄ where the linear density of
interfaces is the inverse of the average grain size, 1/d̄. The method used here for determining Rκ is
similar to that used in by Yang et al. on yttria-stabilized zirconia (see Eq. 5 in Ref. [112]). The
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Figure 6.5: Determination of interfacial thermal resistance (Rκ) from grain boundaries in polycrystalline
skutterudite samples (without rGO). The uncertainty in the grain-size is 20%. (a) and (c) show room
temperature lattice thermal conductivity with varying grain size. Rκ is in units of 10−7 m2K W−1; (b) and
(d) show κlat with temperature for n and p-type skutterudite samples. Lines in all figures are calculated
from Eq. 6.1.

lattice thermal conductivity of polycrystalline samples is then fit to

κ−1
poly = κ−1

bulk +Rκ/d̄. (6.1)

Fig. 6.5 shows the results of modeling the grain size dependent data sets. As can be seen in
Fig. 6.5a and c, n-type and p-type skutterudite materials in this study have the same value of
Rκ = 3.8 × 10−7 m2K W−1 (without graphene) as could be expected from similarities in crystal
structure, chemical species, and processing methods.

For the system with multi-layer graphene, thermal transport through the in-plane direction of the
graphene layer of thickness, t, must be included due to the high thermal conductivity of graphite:
5 Wm−1K−1 in the c-direction and 2000 Wm−1K−1 in the a and b-directions at 300 K [170].

Using the parallel conductance model depicted in Fig. 6.6a the thermal conductivity of the com-
posite system, for t << d̄, is given by

κcomp = κpoly +
2t

d̄
κg. (6.2)
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a) b)

Figure 6.6: a) Diagram of the thermal circuit representing the thermal resistance of grain boundaries wrapped
in graphene with the resistance elements labeled by their respective thermal conductivities. b) Lattice
thermal conductivity (κlat) at 300 K with varying amounts of rGO for both n and p-type skutterudite/rGO
composite (solid symbols). Data for n-type material are from Ref. [167]. The solid lines represent the model
(Eq. 6.2) when thermal boundary resistance is unchanged Rκ = 3.8 × 10−7 m2KW−1. The dashed lines
represent the model when the thermal boundary resistance is increased to 17 × 10−7 m2KW−1 for n-type
and 11× 10−7 m2KW−1 for p-type, due to graphene modification.

Here, κg is an effective in-plane thermal conductivity of graphene, which was treated as a fitting
parameter. A value of κg = 23 Wm−1K−1 at 300 K was used in Figure 6.6b, which is between
the extreme values for graphite mentioned above. The rGO thickness used in this equation was
determined from the volume fraction, y, of rGO and d̄ of the samples (t = d̄×y/3, again for t << d̄).
While TEM images give a measurement of rGO thickness, this is a very local measurement and the
geometrical approach is thought to embody a more average representation of the composite system.

The interfacial thermal resistance, Rκ, of skutterudite with rGO can now be determined by fitting
the data in Fig. 6.6b. The resultant value of Rκ at 300 K was increased by nearly a factor of
3 for p-type and 5 for n-type samples containing rGO. From Fig. 6.6b, it is clearly seen that
the rise in thermal conductivity for higher volume fractions of rGO is explained by the parallel
thermal conductance of graphene around the grains. Thicker multi-layer graphene causes thermal
shorting around the skutterudite grains, increasing the thermal conductivity as the volume fraction
of rGO increases. This ‘shorting’ effect was not observed in electrical conductivity measurements
because the in-plane electrical conductivity of graphite (2.26 × 104 Scm−1, [171]) is smaller than
that of n-type and p-type SKD in this study. For the most reduction in thermal conductivity of the
composite, thinner graphene layers should be used.
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a) b)

Figure 6.7: a) Temperature-dependent zT for Ce0.85Fe3CoSb12/y vol% rGO (y = 0, 0.56, 1.4, 2.8) samples
from 300-800 K and Yb0.27Co4Sb12/y vol% (y = 0, 0.72) samples from 300-850 K from Ref. [167]. b) Inset:
Thermoelectric module with dimension of 20 mm x 20 mm x 16 mm using Ce0.85Fe3CoSb12/1.4 vol% rGO
and Yb0.27Co4Sb12/0.72 0.72 vol% rGO composite as p and n-type legs, respectively. Maximum conversion
efficiency and power output as a function of the hot side temperature Th for the skutterudite/rGO based
modules (M-SKD/rGO) and the reference device made of pure SKD (M-SKD). The dash lines represent
the theoretical conversion efficiency of M-SKD/rGO with a maximum value of 10.5 %, and M-SKD with a
maximum value of 8.0 %, when ignoring electrical and thermal contact resistances.

6.1.5 zT and module performance

Fig. 6.7 shows the temperature dependence of zT for p-type Ce0.85Fe3CoSb12/y vol% rGO (y = 0,
0.56, 1.4, 2.8) samples and n-type Yb0.27Co4Sb12/y vol% rGO (y = 0, 0.72) samples from Ref. [167].
For all p-type sample, the zT first increases with temperature and then drops after reaching a peak at
700 K. This is due to the decrease of power factor and rapid increase of thermal conductivity when
T ≥ 650 K, which is attributed to bipolar conduction. Compared to samples without graphene, zT s
for p-type samples with y ≤ 1.4 exhibit a robust increase due to the increased thermal resistance of
the grain boundaries. The y = 1.4 p-type sample attains a peak zT of 1.06 at 700 K, while n-type
rGO sample attains a peak of 1.51 at 850 K.

The p-type Ce0.85Fe3CoSb12/1.4 vol% rGO and n-type Yb0.27Co4Sb12/0.72 vol% rGO composites
were used to fabricate a thermoelectric module with dimension of 20 mm x 20 mm x 16 mm as
shown in the inset of Fig. 6.7b. A module consisting of 8 n-p couples were assembled via SPS,
spark cutting, and welding by the L. Chen research group at the Chinese Academy of Sciences
[172]. For comparison, a reference thermoelectric module was also fabricated by using pristine
n-type Yb0.27Co4Sb12 and p-type Ce0.85Fe3CoSb12 bulk materials without rGO. Based on PEM-
3 measurements with hot/cold-side temperature 873K/296K, a high conversion efficiency of 8.4
% and maximum power output of 3.8 W were obtained, which is significantly higher than 6.8
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% and 3.1 W of the pristine skutterudite module, further verifying that the skutterudite/rGO
nanocomposite has improved performance. It is the first time that a module with n and p-type
legs both made of skutterudite nanocomposite was fabricated. The measured conversion efficiency
of 8.4 % (∆T = 577K) is among the highest of all reported values not only for skutterudite based
modules [173, 174], but also other TE material systems [175, 176]. The ANSYS-simulated ideal,
theoretical conversion efficiency [176] (dash line in Fig. 6.7b) of the skutterudite/rGO module is
10.5 %, based on the measured thermoelectric properties. The 25% discrepancy between measured
and predicted device efficiency can be attributed to interfacial thermal and electrical resistance
between the thermoelectric material and the metallized ceramic substrate, as well as convection
and radiation losses and is typical for such devices.

6.1.6 Discussion

Not all grain boundaries scatter phonons equivalently. Here, thermal transport modeling revealed
that introducing multilayer graphene into grain boundaries of thermoelectric skutterudite dramati-
cally increases the thermal boundary resistance. When this three dimensional rGO network in the
GBs is kept thin (2 to 6 nm for 1.4 vol% rGO), κlat is reduced by 20% and the electrical properties
are essentially unchanged, resulting in improved zT s. Additionally, thermal shorting via thermal
conduction through the high κlat graphene layers is also avoided. This effect has been seen in both
n and p-type SKD/rGO composites and a TE module consisting of 8 n-p couples was made and
characterized to demonstrate the improved efficiency. It is the first time a module using n and
p-type skutterudite nanocomposite has been made, and its conversion efficiency of 8.4% is among
the highest of any value reported for TE modules [173, 174, 175, 176].

6.2 A chemical understanding of the electronic band structure in
CoSb3 skutterudites2

N-type skutterudites, such as YbxCo4Sb12, have recently been shown to exhibit high valley degener-
acy with possible band convergence, explaining the excellent thermoelectric efficiency in these ma-
terials. Using a combined theoretical and experimental approach involving temperature-dependent
synchrotron diffraction, molecular orbital diagrams and computational studies, the chemical nature
of critical features in the band structure are highlighted. We identify how n-type doping on the filler
site induces structural changes that are observed in both the diffraction data and computational
results. Additionally, we show how chemical n-type doping slightly alters the electronic band struc-
ture moving the high valley degeneracy secondary conduction band closer to the primary conduction

2The content contained in this section was published by Hanus et al. in Ref. [177].
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band and thus inducing band convergence.

Skutterudite CoSb3 is a well-known thermoelectric material, but only recently has it been shown
that, when heavily doped [168], it exhibits a complex Fermi surface with multiple valleys. Indeed,
the extraordinary electronic properties of n-type thermoelectric CoSb3 originates from the presence
of a multi-valley secondary conduction band (CB2) located between the Γ and N points, which is
somewhat higher in energy compared to the primary, Γ-point conduction band (CBΓ). For highly
doped samples and at elevated temperatures (∼ 700 K), CB2 appears to contribute substantially
to the thermoelectric performance possibly even converging with (having the same energy as) the
primary conduction band at Γ.

In this work, we use a combination of temperature dependent synchrotron diffraction and density
functional theory calculations, in which the obtained structural data is used as an input for the the-
oretical calculations. The diffraction data reveals differences in the coefficient of thermal expansion
of local bonds within the structure (local -CTE). These structural parameters are employed in the
calculations to assess changes in the band structure due to structural changes. These experimental
and computational efforts identify the chemical nature of the primary (CBΓ) and secondary (CB2)
conduction bands. We then show both experimentally and computationally how Yb doping changes
the CoSb3 structure beyond simple lattice expansion. Furthermore, a slight structure change ob-
served with increasing Fermi level demonstrates a coupling of these conduction band states to the
atom positions. It is also shown that this increase in Fermi level induces band convergence in CoSb3

at room temperature and above. Here, we show that band convergence can be chemically induced
through population of conduction band states not expected from a rigid band model.

6.2.1 Experimental and computational methods

The combined experimental and computational approach is described in detail below. Synthesis of
the samples was performed using the method given by Tang et al. [178].

Powder Diffraction

X-ray powder diffraction was conducted at Argonne National Lab Advanced Photon Source (APS)
on the designated powder diffraction beam line, 11-BM. Standard Debye-Scherrer geometry with a
1D detector was used for the experiment and the calibrated X-ray wavelength was 0.414208 Å. An
Al2O3/Si reference sample was used for alignment and an instrument parameter file was obtained
using a LaB6 standard (specifics about profile parameters are given below in the refinement section).
Sample absorption was calculated using the ABSORB web utility [179] (which uses the Cromer &
Liberman algorithm to compute X-ray scattering cross sections). After optimizing the absorption
factor, quartz capillary diameters of 0.4 mm and 0.3 mm were used for powder samples of CoSb3
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and Yb0.3Co4Sb12, respectively (no diluting media was necessary). The same anomalous scattering
parameters, f’ and f”, used for the absorption calculation were also used in the Rietveld refinements.
Room temperature scans of both samples were conducted using a high-speed sample spinner (∼ 90
Hz). High temperature scans from 100 oC to 500 oC with 100 oC steps were conducted using the
Cyberstar hot air blower with its corresponding sample spinner (∼20Hz). A typical intensity for
the primary diffraction peak was ∼300,000 counts for the 300 K scans and ∼200,000 counts for the
scans at elevated temperature, confirming the quality of the data.

Refinements

To examine structural changes of CoSb3 with temperature and doping, Rietveld refinements were
conducted on the temperature dependent, high-resolution, powder diffraction data of filled and un-
filled CoSb3. Refinements were conducted using the General Structure Analysis System (GSAS
[180, 181]) for CoSb3 in the Im3̄ space group with Co atoms at (0.25, 0.25, 0.25), and Sb atoms
at (0, y, z). In this representation, the filler atom is located at (0, 0, 0). Note that the origin
in Figure 6.1 is shifted to effectively show both Sb-Sb long and short bonds in one figure. LaB6

powder was used to construct an instrument parameter file and a pseudo-Voigt peak profile was
used (CW profile function 3 in GSAS). The peak profile parameters from this LaB6 parameter file
were fixed throughout the refinement procedure until the last refinement step in which all refine-
ment parameters were unfixed and refined together. To account for peak anisotropy seen in the
Yb0.3Co4Sb12 sample, anisotropic peak broadening parameters were included through the γ-profile
function (L11, L22, etc. parameters in GSAS) in these refinements. Refinements of Yb0.3Co4Sb12

without the anisotropic profile parameters were also conducted and the same trends were concluded
for structural changes with temperature and doping, however the peak positions were more accu-
rately represented when anisotropic profile parameters were included and these results are reported
here. In all diffraction histograms, the electron density on the Co site (0.25, 0.25, 0.25) was slightly
larger relative to that on the Sb site (0, y, z). Several defect mechanisms were tested and statisti-
cally equivalent refinements were achieved for anti-site disorder of Sb on the Co site as well as Sb
vacancies. As Sb vacancies would introduce electrons, and since the undoped samples are slightly
n-type [178], a slight Sb deficiency is assumed. To include Sb vacancies in the refinement, the Co
occupancy was set to 100% and the Sb occupancy was refined along with the scaling parameter.
Note that a high frequency sample spinner was used for the room temperature scans resulting in
better counting statistics than the scans at elevated temperatures in which a lower frequency sam-
ple spinner was used. This is reflected in the refinement statistics, in which the room temperature
refinements have a higher χ2 due to better counting statistics. Refinement uncertainties are given
in the tabulated diffraction data in the Supporting Information of Ref. [177] and the experimental
uncertainty of the lattice parameters of beam line 11-BM is 0.0001 Å.
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Computational methods

Density-functional theory (DFT) calculations for both doped and undoped CoSb3 were conducted
to determine how changes in structure and Fermi level will affect the electronic band structure.

We performed all DFT calculations as implemented in the Vienna ab initio simulation package
(VASP) code. The projector-augmented wave (PAW) method [159] with Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional were used for calculations on the primitive unit cell and
the Yb-doped supercell [160]. The unit cell structure was fully relaxed with a plane wave cutoff
energy of 550 eV with a Gamma centered 7x7x7 Monkhorst-Pack uniform k-point reciprocal space
sampling. The 0.01 eV/Å Hellmann-Feynman forces were adopted for geometry optimization. The
optimized lattice parameter is found to be 9.11 Å, which is consistent with the previous theoretical
value of 9.115 Å using PBE [182], and the internal parameters u=0.3333, v=0.1595. The calculated
direct band gap of CoSb3 is 0.1665 eV, which agrees well with the gap of 0.17 eV reported earlier
[183]. Sofo et al. reported a slightly higher value of 0.22 eV [184]. After our calculations of the fully
relaxed CoSb3 were validated with previous calculations and literature values, a systematic study
on how crystal structure and doping effect the band structure was conducted.

The structural parameters of CoSb3 and Yb0.3Co4Sb12 from 300 to 800 K, as determined via syn-
chrotron diffraction, were used to calculate band structures. In this way, a ‘0 K’ calculation is
conducted with structural parameters set to their values at a given temperature (300 to 800 K) and
we refer to this, here, as the band structure at that specific temperature. This method neglects the
contribution of lattice vibrations, meaning that the computations with temperature only probe the
influence of structure change on the band structure. In reality, there is an additional contribution
from lattice vibrations through electron-phonon interactions (e.g. see Figure 1 of Gibbs et. al.
[185]). The room temperature band gap of CoSb3 calculated by this method is 0.1625 eV, which
agrees with room temperature optical absorption measurements [165].

Here, all calculations of Yb-doped CoSb3 were performed in a 2x2x2 supercell which contains 130
atoms. The chemical composition of this supercell is Yb0.25Co4Sb12. The nominal composition of
the doped CoSb3 is Yb0.3Co4Sb12 and the occupancy from refinements show that the Yb content is
slightly lower than the nominal content, suggesting that this composition is close to that observed
experimentally [165]. Again, the atomic positions were fixed to that measured from synchrotron
diffraction. Typically, the atomic positions are relaxed in supercell calculations as the positions
near an impurity atom will be different than the atomic positions away from one. Synchrotron
diffraction and Rietveld analysis give a spatial average of the atomic positions. Because of this,
fixing the atomic positions to the spatial average may be unphysical and skew the computational
results. DFT calculations, where the lattice parameter was set and the ion positions are relaxed,
were conducted to ensure that the observed trends were not artifacts of the method in which
the supercell calculations were conducted. Additionally, calculations in which the Fermi level was
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Figure 6.8: Exemplary refinement of (a) CoSb3 and (b) Yb0.3Co4Sb12 at 300 K with the corresponding profile
residuals. The black circles are the experimental data, the red line is the calculated histogram, and the line
below is the difference profile between the observed and calculated values. The insets show a zoomed in view
on high angle reflections and the high quality fit of the refinement at the corresponding low d-spacing.

intentionally shifted were conducted to deduce how changing the carrier concentration will affect
the band structure (summary provided in Supplemental Information of Ref. [177]) in addition to
the calculations discussed in Section 6.2.2. This was achieved by manually increasing the number of
electrons of CoSb3, as well as conducting charged impurity calculations where Yb2+

i was included
and compared to the calculation with Yb0

i . A compensating background charge was included, in
these, to prevent divergence of the total energy of the charged system.

The COHP were generated by transferring the PAW wave functions to properly chosen local ba-
sis with Local Orbital Basis Suite Towards Electronic-Structure Reconstruction (LOBSTER) code
[186], and the band unfolding procedure for Yb-doped CoSb3 supercell was performed using the
BandUP code [187].
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6.2.2 Results and discussion

Temperature dependent structural changes in CoSb3

The skutterudite structure can be completely defined by its lattice parameter, a, and the position
of the Sb atom (0, y, z). The different bond lengths illustrated in Figure 6.1 are then given as

d(Co− Sb) = a

[(
1

4

)2

+

(
y − 1

4

)2

+

(
z − 1

4

)2
]1/2

(6.3)

d1(Sb− Sb) = 2az (6.4)

d2(Sb− Sb) = a(1− 2y) (6.5)

with d being the Co-Sb bond, d1 the Sb-Sb short bond, and d2 the Sb-Sb long bond [164]. As
mentioned above, the Sb4 ring contains two bond lengths and a fixed bond angle of 90o. When
d2 = d1 the Oftedal relation of y+z = 0.5 is met (named after the discoverer of the structure [188]),
the ring is a perfect square. In addition, the CoSb6 octahedra do not exhibit perfect Oh symmetry
either. All bond lengths are equal but the bond angles are distorted from 90o. One of the most
defining characteristics of this structure is the large cage centered at (0,0,0). This interstitial site
is commonly referred to as the filler site and can be used for chemical doping. The solubility limit
of doping atoms on this filler site can be a limiting factor when optimizing the electron chemical
potential of thermoelectrics, and it was recently highlighted that this solubility limit is temperature
and composition dependent [168, 189]. Interstitial doping atoms are weakly bonded to the cage
structure and much effort has been devoted to understanding how lattice dynamics of this rattling
atom affect the thermal properties of filled skutterudites [190, 191, 192].

Thermal expansion. In this work, temperature dependent synchrotron X-ray diffraction has been
performed to study the structural evolution of Yb filled and unfilled CoSb3 at higher temperatures.
Exemplary results obtained via Rietveld refinements of the synchrotron data for both CoSb3 and
Yb0.3Co4Sb12 at 300 K can be found in Figure 6.8. The samples are all phase pure and good
profile residuals can be obtained, indicating a high quality of the fit. All the relevant temperature
dependent refinement data is tabulated in Table S1 and S2 of Ref. [177].

Figure 6.9 shows the refined lattice parameter of CoSb3, which increases linearly with increasing
temperature. Introduction of the filler atom further increases the lattice and corresponds well with
the expectation of Vegard’s law within a CoSb3 system, in which an increasing Yb content increases
the lattice parameter linearly [189]. Figure 6.10 shows the changes of the structural motif with
increasing temperature. The y and z positions of Sb change with temperature (see Supporting
Information of Ref. [177]), resulting in an increasing octahedral angle shifting towards a more
symmetric regular Oh symmetry (Figure 6.10a). While the octahedra become more symmetric
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Figure 6.9: Temperature dependent lattice parameter of CoSb3 obtained from the Rietveld refinements,
showing the positive thermal expansion of the unit cell. Introduction of the filler atom further increases the
unit cell. For comparison, data for increasing amounts of Yb are shown from Tang et al. [189]. Literature
data from Ohno et al. [193] show that the linear temperature dependence of a in CoSb3 is maintained down
to 10 K.

(90o angle), the increasing temperature drives the Sb4 ring away from a square towards a more
rectangular arrangement (Figure 6.10b). In addition to the temperature effects, the filler atom itself
changes these relations. Filling the structure partially with Yb increases the octahedral distortion
and increases the (y + z) relation towards a perfect square arrangement of the Sb4 ring. Similar
effects of substitution induced changing of bond angles have recently been reported in the YbZn2Sb2

Zintl phases [194].

The atomic displacement parameters,
〈
u2
〉
, obtained (Table S1 and S2 of Ref. [177]) agree with

what has been previously reported for CoSb3 [195], and other filled skutterudites [196]. The Yb
atom has significantly larger values for

〈
u2
〉
than the Co and Sb atoms, which has been cited as

evidence of the rattling nature of the Yb atom on this cage site [197]. The temperature dependence
of
〈
u2
〉
gave an Einstein temperature for this localized mode of θE = 65(5)K, which is similar to

Yb in YbFe4Sb12 [198].

Local thermal expansion coefficients. The changing Sb positions clearly affect the Oftedal
relation, therefore the local chemical bonds, in particular the Sb-Sb bonds within the Sb4 ring must
be changing as well. Figure 6.11 shows the temperature dependent evolution of the different bond
lengths; the Co-Sb bond and the short and long Sb-Sb bonds, d1 and d2, respectively. At room
temperature, the results correspond well with the structural data by Ohno et al. [193]. While
all bond lengths increase with temperature, as expected due to thermal expansion, differences
in the slopes between the different bonds can be detected. In addition, differences in the bond
lengths of the substituted samples can be seen as well. To assess these differences, the coefficient of
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Figure 6.10: Changes in the CoSb6 octahedral angle (a) and the Oftedal relation (b) with temperature.
With increasing temperature, the structure shifts towards a more symmetric octahedron and away from a
perfect square. Note that the doping with a filler atom leads to a distortion of the octahedral away from a
symmetric 90o angle and a more square Sb4 ring arrangement.

thermal expansion (CTE) is calculated for each bond separately and is treated as a linear expansion
coefficient defined as

αL
300K =

∆l

∆T

1

l300K
. (6.6)

where ∆l is the change in length, ∆T is the change in temperature, and l300K is the length at 300 K.
For a better understanding of the changes we will define αL

300K for bond lengths as a local -CTE and
the evolution of the lattice parameter as CTE. Temperature dependence (∆l/∆T ) of the obtained
structural parameters were successfully fit, giving αL

300K through Eq. 6.6 and are shown in Figure
6.11. The values for the CTE and the local -CTE are tabulated in Table 6.1. The obtained values
of the thermal expansion coefficients of the unit cell correspond well with other literature values.
For instance, Rogl et al. [199] measured a CTE of CoSb3 to be 9.1 × 10−6 K−1 via dilatometer
measurements agreeing with our value in Table 6.1.

Figure 6.11 and Table 6.1 show that the local-CTE of the long Sb-Sb bond in CoSb3 is significantly
larger than that of the Co-Sb and the short Sb-Sb bond. In other words, with increasing temperature
the long Sb-Sb bond (d2) expands much faster than the other two bonds. This faster increase of
bong length of d2 and the corresponding slower increase of the short Sb-Sb bond (d1) leads to the
observed behavior of a structural shift towards a more rectangular Sb4 ring.

Upon doping of CoSb3 with Yb, the αL
300K of the Sb-Sb short bond increases by nearly 50% while

the αL
300K for the Co-Sb and the Sb-Sb long bond remains essentially unchanged (Figure 6.11a). In

addition, the length of the short Sb-Sb bond is significantly increased upon doping, while the length
of Co-Sb bond is only slightly increased and that of the long Sb-Sb bond remains unchanged (see
Figure 6.11). The size of the filler atom and the resulting change in lattice parameter cannot account
for the different changes of the local bonding nature, as a typical Vegard behavior is supposed to
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Figure 6.11: Temperature dependence of the Co-Sb (c) and Sb-Sb bond lengths (a) and (b). Lines correspond
to linear fits used to calculate the local thermal expansion coefficient αL

300K. Literature values from Ohno et
al. [193] are shown by triangles, showing the good fit of the data with literature values at room temperature
and at 10 K. While all bonds expand with increasing temperature in the undoped CoSb3, the longer bond
exhibits a larger slope and faster thermal expansion. Substitution with the filler atom increases the bond
lengths as well. d) Temperature dependence of the octahedral volume, showing the linear thermal expansion
of the CoSb6 octahedra.

change the lattice and the atomic positions in a similar manner. These data clearly show the
qualitative differences in the chemical nature of the two Sb-Sb bonds in CoSb3. Differences of these
two chemical bonds has already been reported by Ohno et al. [193] using the maximum entropy
method to reveal differences in the electron density between the Sb-Sb long and Sb-Sb short bonds.
The electron density between the short bond was larger (by about 30%) than that between the long
bond. This agrees well with the data presented here; less electron density results in a weaker bond,
which should have a larger thermal expansion coefficient than a bond with more electron density
between the atoms. In addition, calculations via density functional theory on the CoSb3 lattice
under strain showed that the Sb-Sb long bond was the first to break under a shear stress, which
also support these experimental results [182]. From these structural data one may speculate the
reason for the differences in the local-CTE behavior between the doped and undoped CoSb3. The
filler atom leads to an elongation of the short Sb-Sb bond and hence less bonding interaction and
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Table 6.1: Linear thermal expansion coefficients of the Sb-Sb, Co-Sb and Yb-Sb bonds in unfilled and filled
skutterudite (normalized to the bond lengths at 300 K). The thermal expansion of the Sb-Sb short bond is
significantly higher in Yb0.3Co4Sb12 than in CoSb3.

Structural

parameter

αL
300K (10−6K−1)

CoSb3 Yb0.3Co4Sb12

lattice parameter, a 9.9 10.5

Sb-Sb long (d2) 15.6 15.9

Sb-Sb short (d1) 8.6 12.6

Co-Sb (d) 9.2 9.1

Yb-Sb - 8.6

lower bond order, and with it a much faster thermal expansion similar to the long Sb-Sb bond.

The differences in the bonds local thermal expansion coefficients as well as the differently affected
bond length after substitution with the filler atom are somewhat unexpected results. To provide
an explanation, we will consider the inherent bonding interactions using a molecular orbital theory
approach and the changes in the electronic band structure are examined via density functional
theory.

Band structure of doped and undoped CoSb3

A chemical understanding of the electronic band structure. As recently shown for Zintl
compounds [200], a combined approach using molecular orbital (MO) diagrams and density function
theory can help gain a better understanding of the underlying chemical nature of the bands and
how changes in structure and Fermi level may affect the bonding and electronic band situation.
To interpret the observed thermal expansion behavior, we first attempt to understand the bonding
qualitatively using a molecular orbital approach to determine the character of the valence and
conduction bands. We then compare these conclusions to Crystal Orbital Hamilton Population
(COHP) and density of states calculations.

Figure 6.12a shows the molecular orbitals for a CoSb6 octahedron in which the Sb lone pairs of the
Sb4 ring coordinate to Co3+ forming an octahedral crystal field. The molecular orbital shows the
octahedral crystal field splitting between the t2g and eg orbitals. Co3+ exhibits six d-electrons (d6

configuration) and therefore, the filled non-bonding t2g orbitals express themselves as heavy states
in the density of states of the valence band [200]. The filled deeper energy levels (a1g, t1u and eg)
in the valence band are of bonding nature and the empty anti-bonding states form the conduction
band, with e∗g representing the conduction band minimum [201]. Figure 6.12b shows the COHP of
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Figure 6.12: In all panels, blue corresponds to contributions from Co and orange to contributions from Sb.
a) Molecular orbital diagrams of the CoSb6 octahedron and the Sb4 ring. Atomic orbitals are not shown for
the Sb4 ring. The octahedral crystal field splitting is visible and gives, in combination with the bonding,
anti-bonding separation of the Sb-Sb bonds the band gap. b) Crystal Orbital Hamilton Population (COHP)
calculated from the DFT data, showing the bonding nature of the Sb-Sb bonds in the valence bands and Sb-Sb
anti-bonding states in the conduction band. The Co-Sb bonds in the valence band are predominantly non-
bonding (t2g) in nature, whereas the conduction band has anti-bonding Co-Sb contributions. c) Schematic
DOS estimated from MO diagrams in (a). d) Partial, atom projected DOS calculated from DFT data.

the different bonds and confirms the nature of low lying bonding Co-Sb states, the non-bonding
t2g closer to the valence band maximum and anti-bonding states at the conduction band edge.
Figure 6.12a shows the molecular orbital diagram of a hypothetical Sb−1 − Sb−1 4-member ring in
D4h symmetry (square arrangement), with the electronic configuration of a Sb with two bonds, i.e.
valence of -1 using Zintl valence counting.

This molecular orbital diagram represents an oversimplification of the real electronic arrangement;
for one the Sb4 ring is rectangular and therefore D2h symmetry. Also a rigorous description of the
molecular orbitals of the Sb4−

4 unit would need to account for all four states per atom not only the
two shown here. For simplicity, we have chosen this single Sb-Sb bond in which the symmetry of the
square and the corresponding electronic energy levels [202], as well as the electron count for Sb− with
two bonds and two lone pairs is incorporated. A deeper discussion regarding the contribution of the
polyanionic ring to the skutterudite band structure, as well as a full tight-binding calculation, can be
found in reference [203]. For a more in depth discussion on the bands and energetic configurations
in solids with square arrangements, the reader is referred to Tremel and Hoffmann [202]. While the
difference in symmetry between D4h to D2h will shift (and potentially split) the energy levels, the
qualitative nature of the bonding states in the valence and anti-bonding states in the conduction
band will be unaltered as can be seen in the COHP simulation results. In brief, the Sb-Sb bonding
arrangement will result in bands with square-ring bonding character at the top of the valence band
and bands with square-ring anti-bonding character near, but not exactly at, the bottom of the
conduction band.
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While the s and pz orbitals of Sb− can mix with the s, pz, dz2 and dx2−y2 of the metal at the
Γ point (i.e. the lone pairs coordinate to Co to form CoSb6 octahedra) the bonding orbitals of
the Sb4 ring cannot significantly mix with the CoSb6 octahedron as they do not have the correct
topology with the Co 3d-orbitals in the D3d point group [202, 203]. In other words, at the Γ point
we can neglect the interaction of the Sb4−

4 ring molecular orbitals with the CoSb6 octahedron and
the electronic structure of Sb4−

4 will superimpose on top of this CoSb6 molecular orbital diagram.
The bonding states of the Sb4 ring are at a similar energy level as the t2g nonbonding orbitals of
Co character requiring DFT calculations to place them in the correct order. This makes the valence
band edge of CoSb3 primarily Sb-Sb bonding character. The Sb4 anti-bonding states are located
slightly above the e∗g anti-bonding states of Co character, as confirmed by the calculated partial
density of states (Figure 6.12d). Following this, we conclude that the primary conduction band
CBΓ can be attributed to the Co-Sb anti-bonding states, as has previously been established by Luo
et al. [201]. The secondary conduction band, CB2, could then be of Sb-Sb anti-bonding character.

Band convergence with n-type doping. Using the structural data of the reported refinements,
the electronic band structures were calculated and the results at 300 K are given in Figure 6.13.
Results at higher temperatures are shown in Figure S3 of Ref. [177] and reveal how lattice expansion
influences the band structure (neglecting lattice vibrations and the electron-phonon interaction).
The band structure shows a direct band gap at the Γ point and an additional secondary conduction
band (CB2) at higher energies. The extraordinary thermoelectric properties of n-type filled CoSb3

have recently been attributed to contributions from this secondary conduction band. At higher
temperatures and when n-type doped, carrier transport seems to occur in both bands, resulting in
a higher valley degeneracy and higher thermopower [178]. An understanding of the chemical nature
of the bands and how they change with temperature and chemical doping are of critical importance
when optimizing n-type CoSb3. To elucidate the effect of the doping on the CoSb3 band structure,
DFT calculations were conducted on supercell structures with Yb atoms included on the filler site
representing a composition of Yb0.25Co4Sb12.

Because the calculations were conducted on supercell structures the Brillouin zone size was reduced,
resulting in a folding of the bands. To compare these band structures to that of undoped CoSb3

(primitive cell), the band structures were unfolded and are shown in Figure 6.13b (effective primitive
cell band structure). The two conduction bands become closer in energy with Yb doping as observed
in Figure 6.13, where by aligning energy scales at the bottom of CBΓ, a decrease in the energy of the
band offset (CB2 − CBΓ) is shown. This band convergence was also observed in the calculations of
Shi et al. [204] in which a different, higher conduction band (at Γ in the supercell), was highlighted
as opposed to the CB2 discussed here. It can also be seen that the Fermi level is increased to just
above the CB2 minimum, confirming the contribution of this band to electrical transport in n-type
doped CoSb3. The band between the Γ and P point also moves quickly upon the addition of filler
atoms [204], which is associated with the movement of the CB2 and addition of Yb.
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Figure 6.13: a) Calculated band structure of undoped CoSb3 at 300 K with the relevant band extrema
labeled. The valence band maximum and conduction band minimum are at the Γ point (3-fold degenerate),
making CoSb3 a direct band gap semiconductor. At higher energies, there is a second conduction band with
12 carrier pockets (CB2). b) Effective primitive cell band structure of Yb-doped CoSb3 calculated using
a supercell (with fixed structural parameters). Dashed lines and color-coded arrows are guides to the eye,
showing that in the doped structure the conduction bands are shifted compared to the undoped E(k). The
scale bar represents the weighting function

The introduction of Yb on the filler cage site can influence the band structure in several ways.
When introduced, the Yb atom will simultaneously change the potential field set by the nuclei of
the lattice (lattice potential effect) and increase the number of electrons in the system (carrier density
effect). Therefore, to truly know the origin of band convergence, one needs to determine which of
these effects is most responsible for the changes in band structure observed from Figure 6.13a to
Figure 6.13b, namely the decrease of (CB2 − CBΓ). To achieve this, an additional calculation was
conducted on CoSb3 with additional electrons introduced to simulate the electrons donated with
Yb doping, but without the associated change in the lattice potential field.

The result of this calculation is shown in Table 6.2, and reveals that a decrease in (CB2 − CBΓ),
an increase in Eg, and a slight increase of the Sb-Sb short bond all occur when the Fermi level
is increased. Charged impurity calculations of Yb0.25Co4Sb12 with Yb2+

i on the interstitial site,
simulating a removal of the conduction electrons donated by Yb, show similar trends. In Table 6.2
CoSb3:doped refers to the addition of four electrons (per 2x2x2 supercell) and Yb0.25Co4Sb12:doped
refers to Yb0

i as the interstitial defect, undoped refers to Yb2+
i . The position-relaxed calculations

show that upon doping with Yb, Sb-Sb short and Co-Sb bonds increase while the Sb-Sb long bond
is essentially unchanged, agreeing with the diffraction data (see Figure 6.11). Through this analysis,
we suggest that the filler atom changes the local structure leading to changes in bonding interactions
resulting in what may have been unexpected trends in bond lengths and local-CTE, as discussed
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Table 6.2: DFT calculations with different Fermi levels, and computational parameters. Similar changes
in the band structure and structural parameters are observed with ‘doping’ regardless of computational
method. *Indicates that this calculation is shown in Figure 7. †Indicates that the values are average bond
distances within the supercell..

Description Band structure Structural parameters

Composition
doped/

undoped
a positions

E

(eV)

CB2-CBΓ

(eV)

Sb-Sb

short (Å)

Sb-Sb

long (Å)

Co-Sb

(Å)

CoSb3* undoped fixed fixed 0.163 0.089 2.854 2.983 2.527

CoSb3 doped fixed fixed 0.215 0.077 2.854 2.983 2.527

CoSb3 undoped fixed relaxed 0.242 0.105 2.882 3.014 2.518

CoSb3 doped fixed relaxed 0.292 0.093 2.884 3.013 2.518

Yb0.25Co4Sb12* doped fixed fixed 0.191 0.050 2.866 2.984 2.533

Yb0.25Co4Sb12 undoped fixed relaxed 0.221 0.088 2.898† 3.012† 2.524†
Yb0.25Co4Sb12 doped fixed relaxed 0.727 0.075 2.900† 3.012† 2.523†

above. Additionally, the slight change in crystal structure with increased Ef demonstrates a coupling
of it with these electronic states.

While the addition of Yb leads to the observed structural changes and with it changes in the
band structure, the increasing Fermi level due to a donation of electrons into the conduction band
and occupation of anti-bonding states (see Figure 6.12) further lowers the secondary energy gap,
(CB2 − CBΓ). These results suggest that band convergence in n-type CoSb3 can be induced by
increasing the carrier density, and therefore should happen with all types of n-type dopants (e.g.
other rare earth fillers, alkaline earth and alkali metal fillers, as well as Te or Ni doping). Tang et
al. [178] constructed a three-band model within the rigid band approximation, with a band offset
of (CB2 − CBΓ) = 0.08eV , which is between the values we obtained for CoSb3 and Yb0.25Co4Sb12.
This model successfully predicted the experimentally observed change in density of states effective
mass (obtained via Seebeck measurements). The change in (CB2 − CBΓ) observed here is a higher
order effect that would not alter the qualitative conclusions of Tang et al.

6.2.3 Discussion

The thermal expansion behavior of bonds (local -CTE) within Yb-filled and unfilled CoSb3 has been
studied with temperature-dependent synchrotron diffraction, revealing a difference in the chemical
nature of the Sb-Sb long and short bonds. Specifically, the Sb-Sb long bond is found to have
a significantly larger thermal expansion than the Sb-Sb short and Co-Sb bonds. By combining
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these structural results with systematic density functional theory calculations and molecular orbital
diagrams, the chemical nature of band structure features was determined. It was identified that
upon n-type doping, the charge carriers introduced populate anti-bonding states and change the
electronic structure, leading to band convergence at room temperature in electron doped CoSb3.
Computational results on Yb-doped CoSb3 agree with synchrotron diffraction data showing that
occupying the filler site changes the local structure in addition to simple lattice expansion. This work
shows that the introduction of charge carriers, from presumably any n-type dopant, can influence
the electronic structure and lead to band convergence.

We show the importance of combining accurate structure determination with systematic density
functional theory calculations to understand band convergence and structural changes in thermo-
electric materials. This combined approach is a powerful tool that can provide new strategies and
approaches in optimizing energy materials.
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Appendix A

Reciprocal space and the first Brillouin zone

It is rather intuitive that information contained in a sound wave is more easily interpreted in the
frequency domain, rather than the time domain. Transforming the pressure versus time information
of a sound wave into frequency, or the inverse of time, essentially amounts to a Fourier transform.
Similarly, much information about quasiparticles in crystals, such as (nearly free) electrons and
phonons, is more easily interpreted in reciprocal space rather than real space.

We now take a moment to define a crystalline lattice, reciprocal lattice, and the first Brillouin zone.
A primitive unit cell is defined by lattice vectors a1, a2, and a3, which are sometimes broken down
into at lattice basis multiplied by a lattice constant. The volume of the primitive unit cell is given
by

VPUC = (a1 × a2) · a3 . (A.0.1)

We define the reciprocal lattice vectors as

b1 =
a2 × a3

VPUC
(A.0.2)

b2 =
a3 × a1

VPUC
(A.0.3)

b3 =
a1 × a2

VPUC
(A.0.4)

There may be more than one atom per unit cell. Each atom is designated by an atomic position
vector r which locates it relative to the the origin of the unit cell. When there is one atom per
primitive unit cell, r is commonly taken to be 0. For multi-atomic unit cells there will be non-zero
r’s. In this way all atoms in a crystal are defined mathematically, and this information is typically
contained in a POSCAR file. A reciprocal lattice is defined by applying translational symmetry to
the reciprocal lattice vectors. If we were to pick a reciprocal lattice point and call it the origin Γ,
the first Brillouin zone is defined as the locus of points in the reciprocal lattice that are closer to Γ

than they are to any other reciprocal lattice point.
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Imagine you have a linear chain of atoms spaced by a. The minimum wavelength of a vibration
you can induce is λ = 2a, making the maximum wavevector in this linear chain π/a. This principle
extends to 3 dimensions, and as a result all of information can be displayed in the first Brillouin
zone (FBZ). This makes the maximum k-vector pointing, for example, in the b1 direction k = b1/2,
when we consider transport properties.

The definition for the reciprocal lattice and FBZ given above naturally contains information about
crystal structure and is therefore anisotropic. However many models, in particular ones that focus on
the specular treatment of κ (i.e. and integral over frequency), will make the isotropic approximation.
This means that the model will only consider the magnitude of the k-vector, k, and not its direction.
Therefore, we define a maximum k by defining a sphere that has the same volume as the FBZ, and
obtain

kmax =

(
6π2

VPUC

)1/3

, (A.0.5)

where VPUC = NV , N is the number of atoms in the primitive unit cell and V is the volume per
atom. If one were to consider three phonon branches which span from k = 0 to k = kmax, then
only acoustic phonons are considered. However, if V is substituted for VPUC in Eq. A.0.5, and
N > 1 then optical modes are being included in the transport model, in essence. This point is often
overlooked in the literature.
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Appendix B

Lattice dynamics

The mathematical description of atomic vibrations of a crystal starts by Taylor expanding the
potential energy of the cyrstal

U = U0 +
∑

α

∑

i

(−Fαi )uαi +
1

2!

∑

αβ

∑

ij

Φαβ
ij u

α
i u

β
j +

1

3!

∑

αβγ

∑

ijk

Φαβγ
ijk u

α
i u

β
j u

γ
k + ... . (B.0.1)

i, j, k designate Cartesian directions and α, β, γ designate atoms in the crystal. U0 is the reference
potential energy and is set to zero. The linear term is also zero since we are Taylor expanding
U about its equilibrium energy. At equilibrium, the bottom of this potential energy landscape,
the slope is zero (think the bottom of a parabola). The slope of the potential energy with atomic
displacement give the negative of the force on the atom

−Fαi =
∂U

∂uαi
. (B.0.2)

Physically this means there is no net force on the atoms when they are all in their equilibrium
positions, −Fαi = 0. Therefore, the first non-zero term in this expansion is the 2nd order, Harmonic
term. The interatomic force constants contained in the 2nd and 3rd order terms are defined as
derivatives of the potential energy with respect to atomic displacements

Φαβ
ij =

∂2U

∂uαi ∂u
β
j

(B.0.3)

Φαβγ
ijk =

∂3U

∂uαi ∂u
β
j ∂u

γ
k

. (B.0.4)

If we truncate H at U2nd then we can write the equation of motion given in Eq. 2.15. To solve this
differential equation we exploit the lattice transnational invariance of a perfect infinite crystal to
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tak the solution as a Fourier decomposed plane wave,

uαi =
1√
mα

∑

k

Akε
α
i,ke

i(k·Rα−ωt). (B.0.5)

Note that Ak is the mode amplitude (scalar), εαi,k is the polarization vector (denoted by the Cartesian
index i) of atom α, and Rα is the lattice vector pointing to the unit cell in which atom α resides.
k is the wavevector, 2π over the wavelength, k = 2π/λ, and is confined to the first Brillouin zone
(FBZ), defined in Appendix A. The acceleration vector can be found by differentiating this twice
with respect to time t

üαi =
−ω2

√
mα

∑

k

Akε
α
i,ke

i(k·Rα−ωt). (B.0.6)

Substituting these into Eq. 2.15 we have

∑

k

ω2Akε
α
i,ke

ik·Rα =
∑

jβ

∑

k

Φαβ
ij

Akε
β
j,k√

mαmβ
eik·Rβ , (B.0.7)

where we have moved the factors of mass to the right side and cancelled the factor e−iωt. Switching
the k to k′ and multiplying by e−ik·Rα we have

∑

k′

ω2Ak′ε
α
i,k′e

ik′·Rαe−ik·Rα =
∑

jβ

∑

k′

Φαβ
ij

Ak′ε
β
j,k′√

mαmβ
eik′·Rβe−ik·Rα . (B.0.8)

Since the plane wave states are orthogonal only the cases in the summations where k = k′ survive,
and the amplitudes cancel

ω2εαi,k =
∑

jβ

Φαβ
ij√

mαmβ
eik·(Rβ−Rα)εβj,k. (B.0.9)

As one can see the solution only depends on the relative placement of the unit cells in the lattice
(Rβ −Rα), i.e. it does not matter what unit cell you call the origin. Rα is therefore taken to be
zero. Additionally, the atomic index α loses it dependence on unit cell and therefore becomes and
simply an atomic site index, which spans the number of atoms in the primitive unit cell N . We
define the dynamical matrix as

Φαβ
ij (k) =

Φαβ
ij√

mαmβ
eik·Rβ , (B.0.10)

which is a 3N × 3N matrix. When this matrix is diagonalized, there will be 3N eigenvalues and
eigenvectors labeled by a branch index s. The eigenvalues are the phonon frequency squared ω2(ks)
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and eigenvectors are the phonon mode shapes εαi (ks)

ω2(ks)εαi (ks) =
∑

jβ

Φαβ
ij (k)εβj (ks). (B.0.11)

By this procedure, the phonon frequency can be computed at any k if the crystal structure and 2nd
order IFCs Φαβ

ij are known.
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Appendix C

Phonon Boltzmann transport equation

Most of this derivation follows Kaviany [205], pg. 189. Aschroft and Mermin also cover this from a
kinetic theory of gases type perspective, [206] pg. 499.

Let us consider a system which conducts heat through independent conduction channels. If we
consider phonons in a crystal as the heat carriers, then the conduction channels are non-interacting
phonon modes denoted by their wavevector k and branch index s, ks. These non-interacting modes
are sometimes referred to as normal modes or eigenstates, each of which has an eigenvector (mode
shape) and eigenvalue (mode energy or frequency). At a given temperature, every channel will have
an equilibrium number of carriers. Since phonons are bosons, this equilibrium number is given by
the Bose-Einstein distribution function,

nBE(ks, T ) =
1

ex − 1
, x =

~ω(ks)

kB T
, (C.0.1)

where ~ is the reduced Planck’s constant (h/2π), ω(ks) is the frequency of phonon mode ks, kB is
Boltzmann’s constant, and T is the temperature. If thermal energy is injected into the system at a
particular location r, the occupation number of phonons n will be pushed away from its equilibrium
number nBE. We express n as the sum of the equilibrium occupation number (time t independent)
and its deviation from this equilibrium (t dependent), n(ks, T, t) = nBE(ks, T ) + n′(ks, t). This
deviation from nBE will induce a thermal heat flux, denoted by the vector ji (or equivalently j).
In the phonon-gas model, this vector is given simply by the product of the phonon modes energy
E(ks) = ~ω(ks), the phonon group velocity vig at which the carrier travels, and the number of
phonons contributing to transport n(ks, t),

jiph =
1

Vk

∑

ks

E(ks)vig(ks)n(ks, T, t). (C.0.2)

1/Vk is the volume in k-space that a phonon mode in the sum occupies and is defined as volume
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of the FBZ (1/VPUC) divided by the number of k-vectors in the sum (Nk), 1/Vk = 1/(NkVPUC),
when a uniform k-grid is used. For example, when a 30 x 30 x 30 uniform k-mesh is used Nk = 303.
Therefore the sum accounts for all phonon modes in the first Brillouin zone. Note, that if n = nBE

in Eq. C.0.2 then ji = 0 after the sum over ks is performed. Or stated more simply, when the
system is in equilibrium (n = nBE) there is no net thermal flux (ji = 0). Therefore, n can be
replaced by n′ in this equation without consequence, and both forms are seen in literature.

In order to determine a functional expression of the thermal conductivity, κij , we seek a form of
(C.0.2) that we can directly compare to Fourier’s law in Eq. 2.1. While the form of Eqs. C.0.2 and
2.1 can be applied to other heat carriers (e.g. electrons), here we will focus on heat conduction by
phonons, κij = κijph.

An equation for n′(ks, t) can be found through the Boltzmann transport equation (BTE) simplified
by recognizing that the external forces will be zero for phonons

(
F i∇in = 0

)
,

vi∇in =
dn

dt

∣∣∣∣
coll

, (C.0.3)

where the velocity here is the group velocity of the phonon, vi = vig. This is one instance where we
assert the phonon-gas model. If the length scale of the gradient in temperature is longer than the
phonon mean free path, the phonons are able to relax to their equilibrium occupation. In this case
n obtains spatial dependence only through the spatial dependence of T ,

vig(∇in) = vig

(
dn

dT
∇iT

)
. (C.0.4)

Note that if n′ is not a function of T then dn/dT = dnBE/dT . Now we apply the relaxation-time
approximation (RTA), which can be viewed as assuming the form of the time varying portion of n′

as an exponential decay with the time constant τ ,

n′(ks, t) ∝ e−t/τ(ks) (C.0.5)

which allows us to evaluate the collision term in (C.0.3) as

dn(ks, t)

dt

∣∣∣∣
coll

= −n
′(ks, t)
τ(ks)

. (C.0.6)

Therefore, using Eqs. C.0.3, C.0.4, and C.0.6 our expression for n′ is

n′(ks) = −τ(ks)vig(ks)
dnBE(ks, T )

dT
∇iT. (C.0.7)
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Applying this to (C.0.2) we have

jiph = − 1

Vk

∑

ks

E
dnBE

dT
vig v

j
g τ ∇jT. (C.0.8)

Now we recall that heat capacity per unit volume of a specific phonon mode C (at constant volume)
is the change in energy of the phonons in this mode with a change in temperature. If the phonon
frequencies are assumed to stay constant with temperature when volume is unchanged (the quasi-
harmonic approximation) we can define

C(ks) =
1

Vk

d(E nBE)

dT

∣∣∣∣
V

=
E(ks)

Vk

dnBE

dT
=
kB

Vk

x2ex

(ex − 1)2
. (C.0.9)

Incorporating (C.0.9) into (C.0.8) gives

jiph = −
∑

ks

C(ks) vig(ks) vjg(ks) τ(ks)∇jT. (C.0.10)

Now by comparing this with Fourier’s law in (2.1), we find an expression for the phonon-gas channel
thermal conductivity tensor which is given in Eq. 2.17.
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Appendix D

Analytical models for phonon properties

D.1 Dispersion relation approximations

The Debye approximation simply assumes all phonons have a group velocity equal to the material’s
speed of sound vs. It is also customary to also make the isotropic approximation, such that the speed
of sound used is the isotropic speed of sound and ω is therefore only a function of the magnitude of
k, k

ω(k) = vsk, for0 < k < kmax. (D.1.1)

Another common dispersion approximation is the Born-von Karman dispersion relation

ω(k) = ωmax sin

(
πk

2kmax

)
(D.1.2)

where kmax = (6π2/(NV ))1/3 and ωmax = 2vskmax/π. Since kmax is determined using the volume
of the primitive unit cell VPUC = NV (rather than the volume per atom V ) this thermal transport
model only considers acoustic phonons, in concordance with Wang et al. [85].

D.2 Heat capacity

The heat capacity of phonon mode ks is given in Eq. C.0.9. For spectral theories we consider
the heat capacity carried by phonons as a function of frequency and are therefore interested in the
quantity

C(ω) =
1

VPUC

∑

ks

~2ω(ks)2

kBT 2

e~ω(ks)/kBT

(e~ω(ks)/kBT − 1)2
δ(ω − ω(ks)). (D.2.1)

Note that Eq. C.0.9 contains a factor 1/Vk = 1/(NkVPUC), since that expression is intended to be
applied computationally where the FBZ sum is approximated by computing phonon properties at
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Nk discrete points in k space. In this analytical treatment we send Nk to infinity such that there
are an infinite number of terms in the sum over k. Therefore, here we lose the dependence on Nk,
which arises from the use of a discrete k-mesh and simply pull the factor of VPUC out of the sum.

Since we desire an analytical expression we convert the sum over k to an integral

C(ω) =
∑

s

ˆ
d3k

(2π)3

~2ω(ks)2

kBT 2

e~ω(ks)/kBT

(e~ω(ks)/kBT − 1)2
δ(ω − ω(ks)), (D.2.2)

where the factor of VPUC that comes along with switching a sum over k to an integral, and the one
in Eq. D.2.1 cancel. Now by switching to spherical coordinates, making the isotropic dispersion
approximation, taking the integral over θ and φ, and converting the integral over k to one over ω
we have

C(ω) =
4π

(2π)3

∑

s

ˆ
dω

vg

ω(k, s)2

v2
p

~2ω(k, s)2

kBT 2

e~ω(k,s)/kBT

(e~ω(k,s)/kBT − 1)2
δ(ω − ω(k, s)). (D.2.3)

The δ-function makes the integral over ω trivial and we obtain

C(ω) =
1

2π2

∑

s

ω4

vgv2
p

~2

kBT 2

e~ω/kBT

(e~ω/kBT − 1)2
. (D.2.4)

Now, if we make the single mode approximation where all phonon branches s are replaced by 3

degenerate acoustic branches we obtain

C(ω) =
3

2π2

ω4

vgv2
p

~2

kBT 2

e~ω/kBT

(e~ω/kBT − 1)2
. (D.2.5)

The phonon velocities in this single mode approximation expression should be computed using Eq.
E.1.1.

D.3 Phonon thermal conductivity at high-T

Here we solve for and analytical expression for the phonon thermal conductivity at high-T . The
spectral heat capacity given in Eq. D.2.5, at high temperatures (T > θD) becomes

Cph(ω) =
3kBω

2

2π2vgv2
p

, (D.3.1)
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A widely used expression for phonon-phonon scattering at high temperatures is [105, 72, 127, 207]

τpp =

(
6π2

V

)1/3 M̄vgv
2
p

2kBγ2ω2T
, (D.3.2)

where M̄ and V are the average atomic mass and volume, and γ is the Grüneisen parameter. With
Eqs. D.3.1 and D.3.2, assuming phonon-phonon scattering dominates (τ = τpp) Eq. 2.22 becomes

κph =

(
6π2

V

)1/3
M̄

4π2γ2T

ωmaxˆ

0

v2
g dω. (D.3.3)

Notice that the factors of vgv2
p in Eqs. D.3.1 and D.3.2 cancel, leaving only v2

g in the integral over
ω. By switching the variable of integration from ω to k we can observe the cubic dependence of κL

on the phonon velocity
ωmaxˆ

0

v2
g dω =

kmaxˆ

0

v3
g dk. (D.3.4)

Therefore, it is useful to define an average v3
g throught the Brilluon zone

〈
v3

g

〉
=

1

kmax

kmaxˆ

0

v3
g dk, (D.3.5)

where kmax = (6π2/V )1/3. With this definition Eq. D.3.3 becomes

κph =

(
6π2

V

)2/3
M̄

4π2γ2

〈
v3

g

〉

T
. (D.3.6)

Next, we show that
´ kmax

0 v3
g dk ∝ v3

s is rigorously true within the Born von Karman approximation
for the phonon dispersion relation, where

ω = vs
2

π
kmax sin

(
π

2

k

kmax

)
(D.3.7)

and
vg = vs cos

(
π

2

k

kmax

)
. (D.3.8)

Inserting Eq. D.3.8 in Eq. D.3.4 one obtains

kmaxˆ

0

v3
g dk = v3

s
2kmax

π
∝ v3

s . (D.3.9)
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Thus, since in practice the pre-factor, A, in κph is normalized to a control sample and held constant
for a given materials system (i.e. M̄ , V , and γ are unchanged), the use of vs in κL = Av3

sT
−1 only

assumes that the a change in a material’s speed of sound accurately reflects the average change in
the group velocity throughout the Brillouin zone.

From Eq. 4.4 we can see that A is defined as

A =

(
6π2

V

)2/3
M̄

4π2γ2
, (D.3.10)

which we can incorporate into Eq. D.3.2 and obtain

τpp = A

(
V

6π2

)1/3 2π2vgv
2
p

kBω2T
. (D.3.11)
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Appendix E

Measurements of the speed of sound and Debye

temperature

E.1 Pulse-echo ultrasound

The speeds of sound can be easily and accurately measured by the pulse-echo method where a piezo-
electric transducer coupled to the sample first sends the initial stress-wave pulse, and then acts as
receiver measuring the echoed ultrasound reflection, Figure E.1 [208]. When no preferred orienta-
tion is observed in the X-Ray analysis, randomly oriented polycrystals can be treated as elastically
isotropic. The time-delay, td, between subsequent reflections must be determined by maximizing
the cross-correlation (Figure E.1c) of the two reflections as follows. If An(t) is the amplitude of
reflection n, then

∑
tAn(t)An+1(t− td) is maximized by varying td. This corresponding value of td

along with the sample thickness, h, is then used to calculate the speed of sound, vL,T = 2h/td. Our
specific instrument uses a longitudinal transducer (measuring vL) with a principle frequency of 5
MHz (Olympus V1091) and a transverse transducer (measuring vT) at 5 MHz (Olympus V157-RM)
with a Panametrics 5072PR pulser/receiver. Table honey with low water content acts as a nice
coupling agent for both longitudinal and transverse acoustic waves. Its viscoelastic properties make
it surprisingly effective at transfering acoustic energy. Crystalbond or superglue can also be used.
A Tektronix TBS 1072B-EDU oscilloscope is used to record the waveforms. A typical waveform
contains over four reflections (3 time-delay measurements), and the measurements from a minimum
of three waveforms (corresponding to 9 individual speed of sound measurements) are averaged.
Measurements having a standard deviation of less than 1% of the mean are common. The largest
error in this measurement technique is the measurement of the sample thickness, and if care is taken
to ensure the sample faces are parallel and a micrometer is used to measure the sample thickness,
< 1% analysis related error is achievable. A single crystal of yttrium aluminum garnet (YAG) with
known elastic properties was used to determine that measurements of the speed of sound on this
home built system have an accuracy of better than 0.6%. The average speed of sound which is
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Pulser/Reciever
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b)

c)

Figure E.1: Overview of pulse-echo ultrasound. a) The experimental setup. b) Example waveform. c)
Cross-correlation between successive reflections in the waveform.

commonly used for transport modeling is calculated as [145]

vs =

(
1

3

[
1

v3
L

+
2

v3
T

])−1/3

. (E.1.1)

The Debye temperature can be calculated using vs and the volume per atom V by Eq. 2.16.

E.2 Low temperature heat capacity

To verify speed of sound measurements via pulse-echo ultrasound, low-T heat capacity can be
used. A Quantum Design Dynacool Physical Property Measurement System was utilized for such
measurements. Apiezon N grease was used to couple samples to the heat capacity option stage. A
semi-adiabatic thermal relaxation method was used and data were collected on warming.

It is possible to determine the so-called Debye level which is defined as β → Cp/T
3 in the T −→ 0
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K limit, where Cp is the heat capacity at constant pressure. β is the horizontal plateau that is
observed when the low frequency linear dispersion (i.e. speed of sound) makes up the vibrational
density of states (i.e., g(ω) ∝ ω2), and is related to the Debye temperature through the relation

θD =

(
12

5
π4NR

)1/3

β−1/3, (E.2.1)

where β has units of J mol−1 K−4, N is the number of atoms per formula unit and R is the gas
constant. The results of low-T heat capacity have provided excellent verification of the pulse-echo
experiments in many systems including PbTe [100], SnTe [95], and the Mg2(Sb,Bi)3 system [209].
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Appendix F

Grüneisen parameters and tensors

There are many different formulations and definitions of Grüneisen parameter. One thing all pa-
rameters have in common is that they in someway, capture a materials anharmonicity. Here we
rigorously define several commonly used forms, and relate thermodynamic and lattice dynamics
based definitions.

We can define a thermodynamic-Grüneisen parameter which is related to Eq. 2.43. Starting with
the change in Helmholtz free energy (at constant composition, charge carrier concentration etc.)

dFV = σijdεij − SVdT, (F.0.1)

where FV is the Helmholtz free energy per unit volume, σij and εij are the 3x3 stress and strain
tensors, and SV is the entropy per unit volume. From Eq. F.0.1 we can obtain the Maxwell relation

(
∂SV

∂εij

)

T

= −
(
∂σij
∂T

)

ε

. (F.0.2)

Now the thermodynamic-Gruneisen parameter is defined as

γij =
1

cV

(
∂SV

∂εij

)

T

= − 1

cV

(
∂σij
∂T

)

ε

. (F.0.3)

When only hydrostatic stains and stresses are considered, we take the trace of this 3x3 tensor

γ =
V

cV

(
∂SV

∂V

)

T

= − 1

cV

(
∂P

∂T

)

ε

. (F.0.4)

Now we can arrive at Gruneisen’s initial result, which in the midst of all of these definitions I
explicitly name the hydrostatic thermodynamic Gruneisen parameter (Note: you have to use the
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triple product rule 1 to manipulate ∂σ/∂T )

γ =
BTαP

cV
, (F.0.6)

where BT is the bulk modulus at constant temperature, αP is the thermal expansion at constant
pressure, and cV is the heat capacity per unit volume.

F.0.1 Relating phonon and thermodynamic Gruneisen parameters

Returning to Eq. F.0.1 we recall that

σij =
∂FV

∂εij
. (F.0.7)

Now in the quasi-harmonic approximation the free energy of the solid can be written as the sum
of a bond enthalpy term Φ and vibrational entropy of harmonic oscillators, both zero point energy
and energy from thermal phonons, such that

FV = Φ +
1

2

∑

ks

~ω(ks) +
∑

ks

nBE(ω, T )~ω(ks), (F.0.8)

taking the partial derivative of this with respect to a component of the strain tensor, εij , we have

∂FV

∂εij
=

∂Φ

∂εij
+

1

2

∑

ks

~
∂ω(ks)

∂εij
+
∑

ks

n(ω, T )~
∂ω(ks)

∂εij
, (F.0.9)

where under the quasi-harmonic approximation we assume that the strain does not change the
number of phonons at a given frequency, ∂n(ω, T )/∂εij = 0. Now we take the partial derivative
with respect to temperature and obtain the following

∂σij
∂T

=
∑

ks

∂n(ω, T )

∂T
~
ω(ks)

ω(ks)

∂ω(ks)

∂εij
, (F.0.10)

since the bond enthalpy and thus phonon frequencies don’t change with a change in temperature
under the quasi-harmonic approximation. Recognizing that

cV(ks) = ~ω(ks)
∂n(ω, T )

∂T
(F.0.11)

1The triple product rule is (
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (F.0.5)
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is the heat capacity for a given phonon mode (ks) and the definition of the mode-specific Grüneisen
tensor γij(ks) in Eq. 2.43, we write

∂σij
∂T

= −
∑

ks

cV(ks)γij(ks). (F.0.12)

Now with Eqs. F.0.12 and F.0.3 we can relate the phonon-Grüneisen tensor to the thermodynamic-
Grüneisen tensor

γij =

∑
ks cV(ks)γij(ks)∑

ks cV(ks)
z =

1

cV

∑

ks

cV(ks)γij(ks). (F.0.13)

The trace of the thermodynamic-Grüneisen tensor gives the hydrostatic thermodynamic Grüneisen
parameter, which is commonly referred to simply as the Grüneisen parameter

γ = γii. (F.0.14)
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Appendix G

Phonon scattering theory

Here, we derived the phonon relaxation time due to the introduction of a perturbation H′ to the
harmonic lattice Hamiltonian H = T + U2nd. For intrinsic phonon-phonon scattering this pertur-
bation comes from another phonon when anharmonicity is included. For phonon defect scattering,
this perturbation can be described by a spatially varying scattering potential V (r). The probability
of scattering per unit time of a phonon is given by Fermi’s Golden Rule as [206]

Wk,k′ =
2π

~
|
〈
f
∣∣H′
∣∣ i
〉
|2δ(∆E) . (G.0.1)

G.1 Three phonon scattering

The intrinsic lifetime of a phonon depends on its interaction with other phonons in the system. The
largest contributor is a three phonon interaction of which there are two types, emission (Type I)
and absorption (Type II). These interactions must conserve wavevector, and energy which is given
for Type I

k1 = k2 + k3 + b (G.1.1)

~ω1 = ~ω2 + ~ω3 (G.1.2)

and for Type II

k1 + k2(3) = k3(2) + b (G.1.3)

~ω1 + ~ω2(3) = ~ω3(2) . (G.1.4)

b is zero for Normal processes and a reciprocal lattice vector (Eq. A.0.2 to A.0.4) for Umklapp
processes. Since Normal processes conserve the phonon momentum and energy they do not directly
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contribute to thermal resistance. However, they do serve to populate phonon modes which can un-
dergo Umklapp processes, which are resistive. The relaxation time approximation which is asserted
in Eq. C.0.6, in practice assumes that both Normal and Umklapp processes are resistive. There-
fore, the RTA is known to under-predict κph. An iterative solution of the phonon BTE captures
the appropriate behavior of Normal versus Umklapp processes and is therefore more accurate.

To examine the errors introduced by adopting the RTA, we return to our example problem of
Si shown in Figure 2.2. κph was computed using both the RTA and an iterative solution to the
phonon BTE, using the almaBTE suite [210]. The RTA calculated κph was 2.5% lower than the
iterative solution at 300K and 1.3% lower at 50K. Experimental error in the measurement of thermal
diffusivity by LFA is 3%. Therefore, in this work we find the RTA to be sufficiently accurate. We
therefore do not distinguish between Normal and Umklapp process, and simply refer to intrinsic
phonon scattering as phonon-phonon scattering, which is meant to include both Umklapp and
Normal processes. Cases where the RTA fails seem to be in materials with very high thermal
conductivity [211] and/or in materials where there are phase space restrictions which prohibit a
phonon mode from easily reaching its equilibrium occupation number. The RTA seems to work well
in low thermal conductivity materials.

G.2 Elastic defect scattering

For elastic defect scattering, an incident phonon k interacts with the defect and scatters into k′ of
the same energy. Therefore the initial state in Eq. G.0.1 is simply a phonon in state k, |i〉 = |k〉,
and the final is one in state k′, |i〉 = |k′〉. The change in energy of the system is then given by
∆E = Ek − Ek′ , where Ek = ~ωk is the energy of a phonon with wavevector k. For simplicity, we
suppress phonon branch index, since that does not affect the central point of our argument, which
can be seen by thinking of the perturbation in terms of a scattering potential V (r). It is convenient
to think of the crystal as a rectilinear brick with sides Lx, Ly, Lz and in the x, y, and z directions,
and to write the volume of the crystal as LxLyLz. The matrix element is then given by

〈
k′
∣∣H′
∣∣k
〉

=
1

LxLyLz

˚
d3rV (r)e−i(k

′−k)·r. (G.2.1)

It is also convenient to introduce the scattering vector

q = k′ − k . (G.2.2)

The object of ultimately greater interest than the scattering probability to us is the relaxation time
of a phonon, τ(k), and its inverse the phonon scattering rate Γ(k) = τ(k)−1. To find this, we must
integrate Wk,k′ over all possible final phonon wavevectors. At the same time, we imagine that the
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inverse of this life time is defined via a Boltzmann equation formulation, on the basis of which we
incorporate in this integral, a forward scattering suppression factor (1− k̂ · k̂′) with k̂ and k̂′ being
unit vectors parallel to k and k′. That is to say [206],

Γ(k) = LxLyLz

˚
d3k′

(2π)3
Wk,k′(1− k̂ · k̂′) . (G.2.3)

The role of the dimensionality of the scattering defect can now be addressed. It is useful to discuss
the different dimensionalities separately, and begin in the middle with a linear defect, dd = 1.

G.2.1 One-dimensional defects

Suppose the defect is a linear object parallel to the z direction, so that

V (r) = V (x, y) (G.2.4)

is a function only of x and y, independent of z. The position integral in the matrix element then
simplifies to ˚

d3rV (x, y)e−iq·r = 2πδ(qz)×
¨

dx dy V (x, y)e−i(qxx+qyy), (G.2.5)

and invoking well established rules for interpreting the square of a δ-function (the square of the
δ-function needs to be rewritten as δ2(qi) = Liδ(qi)/(2π)), we find a scattering probability

Wk,k′ =
2π

~
Lz

(LxLyLz)2

∣∣∣∣
¨

dx dy V (x, y)e−i(qxx+qyy)

∣∣∣∣
2

× (2π)δ(qz)δ(Ek′ − Ek). (G.2.6)

We now define a reduced matrix element,

M2d =

¨
dx dy V (x, y)e−i(qxx+qyy), (G.2.7)

where the subscript ‘2d’ indicates that the integral is two-dimensional. Then,

Wk,k′ =
(2π)2

~
Lz

(LxLyLz)2
|M2d|2δ(qz)δ(Ek′ − Ek), (G.2.8)

and, with n2d = (LxLy)
−1 defined as the areal density of linear defects,

Γ(k) =
n2d

2π~

˚
d3k′ |M2d(qx, qy)|2(1− k̂ · k̂′)δ(qz)δ(Ek′ − Ek). (G.2.9)

The essential point now is that the two δ-functions in the integral, which express conservation of
energy and wavevector parallel to the defect, constrain us to a one-dimensional curve in k-space,
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and thus render the integral effectively one-dimensional. We can see this very clearly by assuming
an isotropic phonon spectrum, Ek = Ek = ~ωk, in which the energy Ek depends on k = |k| only.
With the phonon group and phase velocities defined as

vg(k) =
∂ωk
∂k

, vp(k) =
ωk
k
, (G.2.10)

we get

δ(Ek′ − Ek) =
1

~|vg(k)|δ(k − k
′). (G.2.11)

Beginning here, we will omit the absolute value sign around vg as the group velocity is always
positive for our treatment. However, real phonon dispersion relations can have a negative vg and
in this case the absolute value is required. We stress that the assumption of isotropy in no way
diminishes the generality of the dimensional arguments, and is made so as to not encumber the
analysis with inessential detail. In spherical polar coordinates, the second δ-function (in conjunction
with δ(k − k′)) reads

δ(qz) = δ(k cosϑ− k′ cosϑ′) =
1

k
δ(cosϑ− cosϑ′). (G.2.12)

The conservation laws are equivalent to k′ = k and ϑ′ = ϑ. Further, d3k′ = k′2 sinϑ′dk′ dϑ′dϕ′. The
integrals over k′ and ϑ′ can be done trivially because of the δ-functions, and we get

Γ(k) =
n2dωk

2πvgvp~2

ˆ 2π

0
dϕ′ |M2d(qx, qy)|2(1− k̂ · k̂′). (G.2.13)

The two-dimensional phonon density of states is

g2d(ω) =
ω

2πvg(ω)vp(ω)
, (G.2.14)

and if we define the average squared matrix element as

|M2d|2 =
1

~2

ˆ 2π

0
dϕ′ |M2d(qx, qy)|2(1− k̂ · k̂′), (G.2.15)

we get the result quoted in Eq. 1, i.e.,

Γ(k) = n2dg2d(ωk)|M2d|2 (linear defect). (G.2.16)
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For the evaluation of |M2d|2 it is useful to keep in mind that

qx = k sinϑ(cosϕ′ − cosϕ),

qy = k sinϑ(sinϕ′ − sinϕ),

(1− k̂ · k̂′) = 2 sin2 ϑ sin2 1

2
(ϕ′ − ϕ). (G.2.17)

G.2.2 Zero-dimensional defects

For a zero-dimensional or point defect, the potential

V (r) = V (x, y, z) (G.2.18)

depends on all three coordinates, and there is no simplification in the matrix element. We write
this matrix element as

M3d(q) =

˚
d3r V (r)e−iq·r, (G.2.19)

where the subscript indicates a three-dimensional integral. Then,

Wk,k′ =
2π

~
1

(LxLyLz)2
|M3d|2δ(Ek′ − Ek), (G.2.20)

and, with n3d = (LxLyLz)
−1 defined as the (volumetric) density of point defects,

Γ(k) =
n3d

(2π)2~

˚
d3k′ |M3d(q)|2(1− k̂ · k̂′)δ(Ek′ − Ek). (G.2.21)

If we once again take an isotropic phonon spectrum for simplicity, and employ spherical polar
coordinates, the integral over the magnitude k = |k| can be done, and we get

Γ(k) =
n3dω

2
k

4π2vgv2
p~2

ˆ
dΩ′ |M3d(q)|2(1− k̂ · k̂′), (G.2.22)

where dΩ′ = sinϑ′dϑ′ dϕ′. The three-dimensional phonon density of states is

g3d(ω) =
ω2

2π2vg(ω)v2
p(ω)

, (G.2.23)

and if we define the average squared matrix element as

|M3d|2 =
1

2~2

ˆ
dΩ′ |M3d(q)|2(1− k̂ · k̂′), (G.2.24)
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we get the result cast into the form of Eq. 2.27,

Γ(k) = n3dg3d(ωk)|M3d|2. (point defect) (G.2.25)

This time, there is no useful simplification for the arguments of the functions in the integrand for
|M3d|2, and one must remember the full expressions,

q = k′ − k,

k = k(sinϑ cosϕ, sinϑ sinϕ, cosϑ),

k′ = k(sinϑ′ cosϕ′, sinϑ′ sinϕ′, cosϑ′). (G.2.26)

G.2.3 Two-dimensional defects

We now consider a two-dimensional or planar defect parallel to the yz plane. Then

V (r) = V (x) (G.2.27)

depends on x only. As a result, both ky and kz are conserved in addition to Ek, and there are only
two possibilities for the final state wavevector:

k′x = ±kx, k′y = ky, k′z = kz, (G.2.28)

corresponding to forward scattering and specular reflection. Only the latter contributes to the life
time, and we get

Γ(k) =
n1d

~2vg

[
|M1d(qx)|2(1− k̂ · k̂′)

]
qx=−2kx

. (G.2.29)

Here n1d = L−1
x is the density of planar defects,

g1d =
1

πvg
(G.2.30)

is the one-dimensional phonon density of states, and

M1d(qx) =

ˆ
dxV (x)e−iqxx. (G.2.31)

To cast the answer into the form of Eq. 2.27,
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Γ(k) = n1dg1d(ωk)|M1d|2, (planar defect) (G.2.32)

we must define,

|M1d|2 =
π

~2

[
|M1d(qx)|2(1− k̂ · k̂′)

]
qx=−2kx

. (G.2.33)

In this equation, one can also write the forward scattering suppression factor as

(1− k̂ · k̂′) =
2k2

x

k2
. (G.2.34)

G.3 Defining τ(ω) for non-isotropic defect scattering

The phonon scattering rate for linear and planar defects depends on the direction of incidence, due
to conservation of components of k. Naturally an expression for the spectral phonon relaxation
time, τ(ω) as implemented into Eq. 2.22, will need to contain information about the direction of
thermal transport with respect to the direction of the defect. We seek the appropriate definition of
τ(ω) for phonon scattering events which depend on direction of incidence.

For a dislocation line pointing in the z-direction, or grain boundary in the yz plane, the component
of the thermal conductivity tensor which is most commonly of interest is the (i, j) = 1, 1 or xx
component. From standard transport theory for an isotropic solid, we have

κph,xx = 3

˚
d3k

8π3

kB(~ωk/kBT )2e~ωk/kBT

(e~ωk/kBT − 1)2

1

Γ(k)

v2
gk

2
x

k2
(G.3.1)

where Γ(k) is the scattering rate for phonons of wavevector k, vg is the group velocity, and the
integral runs over the first Brillouin zone. It is useful to perform the integrations over the magnitude
and orientation of k separately. We therefore define the phonon lifetime as a weighted orientational
average of the inverse of the orientation-specific scattering rate,

τ(ω) =

˜
Γ−1(k)k2

x dΩ˜
k2
x dΩ

=
3

4π

¨
Γ−1(k)

k2
x

k2
dΩ, (G.3.2)

with dΩ = sin θ dθdφ. In terms of this quantity, we then have

κph,xx =
1

2π2

ˆ
kB(~ωk/kBT )2e~ωk/kBT

(e~ωk/kBT − 1)2
τ(ω)v2

g k
2dk. (G.3.3)

By defining a spectral heat capacity in Eq. D.2.5 and switching the variable of integration to ω, we
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arrive at the expression quoted in Eq. 2.22. There, we omit the tensor subscripts and write just
κph instead of κph,xx.

G.4 Scattering from an infinite array of linear defects

We extend the analysis of the previous sections to a scattering potential

V (x, y) =
∞∑

n=−∞
V0(x, y − nD), (G.4.1)

which describes an array of one-dimensional defects all parallel to the z axis, lying in the yz plane.
The potential V0 is associated with a single line defect. For convenience this single line defect is
centered about the origin (x = y = 0). With

Ṽ0(qx, qy) =

¨
dx dy V0(x, y)e−i(qxx+qyy), (G.4.2)

the reduced matrix element for the array becomes

M2d =

¨
dx dy

∞∑

n=−∞
V0(x, y − nD)e−i(qxx+qyy)

=
∞∑

n=−∞
e−iqynDṼ0(qx, qy). (G.4.3)

If we now apply the Poisson summation formula,

∞∑

n=−∞
e−iqynD =

2π

D

∞∑

m=−∞
δ(qy + qm),

(
qm =

2πm

D

)
, (G.4.4)

square the matrix element, and interpret the squared delta function as before, we obtain

|M2d|2 =
2πLy
D2

∞∑

m=−∞
δ(qy + qm)

∣∣∣Ṽ0(qx, qy)
∣∣∣
2
. (G.4.5)

If we substitute this into Eq. G.2.3 and Eq. G.2.8, we obtain

Γ(k) = n1d
∑

m

˚
d3k′

∣∣∣Ṽ0(qx, qy)
∣∣∣
2

~2D2
(1− k̂ · k̂′)δ(qz)δ(qy + qm)δ(ωk′ − ωk). (G.4.6)
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G.4.1 Conservation laws

To evaluate the integral over k′, it is necessary to reexpress the δ-functions in terms of k′ directly.
We first note that

δ(ωk′ − ωk) =
δ(k′ − k)

vg
=

2k

vg
δ(k′2 − k2). (G.4.7)

We then observe that along with the constraints k′z = kz, k′y = ky − qm,

k′2 − k2 = k′2x − (k2
x + 2kyqm − q2

m). (G.4.8)

It is useful to define

k′x,m± = ±(k2
x + 2kyqm − q2

m)1/2, qx,m± = −kx ± (k2
x + 2kyqm − q2

m)1/2. (G.4.9)

We thus obtain the replacement rule

δ(qz)δ(qy + qm)δ(ωk′ − ωk) =
1

vg

∑

σ=±
J(k,m)δ(qz)δ(qy + qm)δ(qx − qx,mσ), (G.4.10)

where J is a dimensionless Jacobian or volume rescaling factor,

J(k,m) =
k∣∣k′x,mσ
∣∣ =

k

(k2
x + 2kyqm − q2

m)1/2
. (G.4.11)

For practical purposes, it is also useful to rewrite the forward scattering suppression factor (keeping
in mind that k′ = k),

1− k̂ · k̂′ = −q · k
k2

=
1

k2
(k2
x ∓ kx(k2

x + 2kyqm − q2
m)1/2 + kyqm). (G.4.12)

Hence,

Γ(k) =
n1d

~2vgD2

∞∑

m=−∞

∑

σ=±

(k2
x ∓ kx(k2

x + 2kyqm − q2
m)1/2 + kyqm)

k(k2
x + 2kyqm − q2

m)1/2

∣∣∣Ṽ1(qx,mσ,−qm)
∣∣∣
2
. (G.4.13)

This is the working formula that we use for numerical calculation.

G.4.2 Specular scattering: long wavelength limit

In this section we derive what is essentially the acoustic mismatch model (AMM) by solving Eq.
3.13 analytically in the low-frequency limit. As mentioned in Section 3.1.2, at low frequencies the
only scattering is specular reflection due to rotation, i.e., the m = 0 term. This term leads to a
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scattering rate,

Γspec(k) =
2n1dvsγ

2
Rb

2

D2

k

|kx|
. (G.4.14)

The corresponding contribution to the phonon lifetime, after averaging over incident phonon direc-
tion is

τspec(k) =
D2

2n1dvsγ
2
Rb

2
× 3

4π

¨ |kx|3
k3

dΩ =
3D2

8n1dvsγ
2
Rb

2
, (k < π/D). (G.4.15)

The reciprocal of this analytic expression is precisely the first term in 3.14, and provides a check on
our numerical evaluation.

G.4.3 Phonon-dislocation strain scattering: short wavelength limit

Similar to the how the AMM was derived by evaluating Eq. 3.13 in the low-frequency limit, phonon
scattering from independent dislocations can be derived by evaluating it in the high-frequency limit.
When the phonon frequency is high there are many diffracted beams, and the Poisson sum can be
approximated by an integral. The resulting expression for the scattering rate simplifies to

Γ(k) =
n1dγ

2ω2

2πvsD

˚
d3k′

∑

a

|ε̃a(q)|2(1− k̂ · k̂′)δ(qz)δ(k′ − k). (G.4.16)

To evaluate this integral, we employ spherical polar coordinates with k′z as the pole, and the azimuth
measured from k′x. Using θ and φ as the polar and azimuthal angles for k, and θ′ and φ′ for k′, we
get

Γ(k) =
n1dγ

2ω2k

2πvsD

∑

a

Fa(k), (G.4.17)

with

Fa(k) = 2 sin2 θ

ˆ 2π

0
|ε̃a(q)|2 sin2 1

2(φ′ − φ) dφ′. (G.4.18)

In evaluating the Fa’s, it is useful to observe that

qx = −2k sin θ sin 1
2(φ′ + φ) sin 1

2(φ′ − φ),

qy = 2k sin θ cos 1
2(φ′ + φ) sin 1

2(φ′ − φ),

q2
x + q2

y = 4k2 sin2 θ sin2 1
2(φ′ − φ). (G.4.19)
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Hence,

FR(k) = 4b2
1

2k2

ˆ 2π

0
sin2 1

2(φ′ + φ) dφ′ =
2π

k2
b2,

F∆(k) =
[b(1− 2ν)

1− ν
]2 1

2k2

ˆ 2π

0
cos2 1

2(φ′ + φ) dφ′ =
π

2k2

[b(1− 2ν)

1− ν
]2
, and

FS(k) =
b2

(1− ν)2

1

2k2

ˆ 2π

0
sin2 1

2(φ′ + φ) cos4 1
2(φ′ + φ) dφ′ =

π

16k2

b2

(1− ν)2
. (G.4.20)

We see that all three Fa’s are independent of the direction of k. So, consequently, is the scattering
rate. This rate is therefore equal to its orientational harmonic mean, and thus directly equal to the
inverse of the phonon lifetime defined in Section G.3. That is,

1

τ(k)
= Γ(k) =

n1dγ
2ω2k

2πvsD
× 1

k2

[π
2

b2(1− 2ν)2

(1− ν)2
+ 2πb2 +

π

16

b2

(1− ν)2

]
, (k � π/D). (G.4.21)

Using ω = vsk and n1d/D = n2d, we can write this more compactly as

1

τ(ω)
= Kνn2dγ

2b2ω, (k � π/D), (G.4.22)

with Kν defined in Eq. 3.16.

G.5 Useful Fourier transforms and identities

This section provides Fourier transforms that are used throughout this thesis.

• The integral definition of a Dirac δ-function is essentially the Fourier transform of 1

ˆ
e−ikxxdx = 2πδ(kx). (G.5.1)

• Care must be taken when handling the square of a Dirac δ-function

δ(kx)2 = δ(kx)
1

2π

ˆ
e−ikxxdx = δ(kx)

Lx
2π
, (G.5.2)

where Lx is the length integrated over in the x-direction (length of crystal). In practice Lx
typically ends up contributing to the dimensions contained in the spatial density of defects
nnd, see for example Eq. G.2.8.
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• The Fourier transform of 1/r, with r = (x2 + y2)1/2 and q = (q2
x + q2

y)
1/2, is

¨ (
1

r

)
e−i(qxx+qyy)dxdy =

2π

q
. (G.5.3)

• The Fourier transform of a step function defined as

Θ(x) = −1/2 when x < 0

Θ(x) = 1/2 when x > 0,
(G.5.4)

is ˆ
Θ(x) e−iqxxdx =

i

qx
. (G.5.5)
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Appendix H

Thermal boundary conductance

The thermal conductance due to phonon transport across an interface, or the thermal boundary
conductance hB, can be derived by accounting for the amount of heat impinging upon an interface
and defining a transmission probability, t(ks), which has values between 0 and 1

hB =
∑

ks

hB(ks) (H.0.1)

hB(ks) =
1

4
C(ks)vg(ks)

t(ks)

1− t(ks) , (H.0.2)

where C(ks) is defined in Eq. C.0.9. This formalism was first proposed by Landauer [37] for
electron transport, and has been extended to phonons by Dames et al. [70, 212, 46, 4]. Occasionally
in literature the factor t/(1 − t) is replaced by t. While both treatments agree at small t, when t
approaches 1, this will introduce a fictitious thermal resistance. This can be observed by setting
t(ks) = 1 at which hB(ks) should go to infinity (resistance go to 0). If the factor t/(1 − t) were
simply t in Eq. H.0.2, hB(ks) would be finite. A discussion regarding the physical differences
between the two formulations is given in Appendix C of Ref. [212] and Ref. [37].

Now we will relate this mode specific Landauer model to a mode specific model utilizing perturbation
theory and relaxation times. We set the interface plane normal to be the z-direction and examine
the (i, j) = (z, z) component of κph,ij as shown in Figure 2.5. The phonon thermal conductivity of
mode ks in Landauer theory is given by

κph(ks)−1 = κbulk(ks)−1 + (LhB(ks))−1 (H.0.3)

where κbulk(ks) = C(ks)vg(ks)2 cos2 θ τpp(ks), recalling that vg,z(ks) = vg(ks) cos θ.

The phonon thermal conductivity using a interfacial relaxation time and perturbation theory is
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given by
κph(ks)−1 = κbulk(ks)−1 + κB(ks)−1 (H.0.4)

where κB(ks) = C(ks)vg(ks)2 cos2 θ τB(ks). By equating Eqs. H.0.3 and H.0.4 we find

t(ks) =
τB(ks)

L
4vg(ks) cos2 θ

+ τB(ks)
. (H.0.5)

If phonon mode ks is travels in a direction perpendicular to the plane normal vector, θ = 90o and
t(ks) = 0, as expected.
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1.1 The general ranges of thermal (κ) and electrical (σ) conductivity for solids. Thermal
conductivity spans approximately 5 orders of magnitude while electrical conductivity
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and electrical conductivity can be changed by approximately 1.5 and 6 orders of
magnitude, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 An illustration of a solid in which heat is flowing. A source has injected heat on the
left side, and on the right side there exists a sufficiently large heat sink. When stead
state is reached a thermal gradient ∇iT has been established. The magnitude of the
heat current ji is set by the materials thermal conductivity κij through Fourier’s law,
Eq. 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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2.2 Phonons and phonon thermal conductivity of perfect, single crystalline Si computed
using ab initio based lattice dynamics and the phonon Boltzmann transport equa-
tion at 300K. The green lines show analytical expressions which hold at low-ω, and
highlight numerical artifacts which commonly accompany this type of mode specific
simulation. a) The phonon dispersion relation along Γ−X calculated from 2nd order
interatomic force constants (Appendix B). b) The spectral heat capacity (Eq. 2.18).
c) Mode dependent phonon group velocity, vg(ks) (dots) and the isotropic average
group velocity at a given frequency vg(ω) (line, Eq. 2.19). d) The phonon dispersion
relation with phonon line broadening defined by the phonon-phonon scattering re-
laxation time. The discrete behavior in k is not physical and represents the discrete
nature of the uniform k-mesh. Note that we use a relatively dense mesh of 30 x 30 x
30. e) The mode dependent relaxation time due to phonon-phonon scattering τ(ks)

(dots), and the isotropic average relaxation time at a given frequency τ(ω) (line,
Eq. 2.20). The inset shows a τ ∝ ω−2 fit to the computational data at low-ω. f)
The spectral thermal conductivity computed using the data points shown in panels
a, c, and e. The peak at 5 meV is artificial and is due to poor sampling of k-space
below 10 meV. From analytical consideration (green lines), κ(ω) should converge to
a constant value as ω → 0 rather than go to zero. . . . . . . . . . . . . . . . . . . . 21

2.3 Schematic representations of phonon scattering and lattice softening. a) A real space
depiction of phonon scattering and lattice softening. b) The phonon dispersion and
linewidth of a pristine crystal. c) Phonon scattering due to the introduction of crystal
defects. d) Lattice softening, reduced elastic moduli and speed of sound due to the
introduction of crystal defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Phonon scattering diagrams for defects with different dimensionality. a) A phonon
scattered elastically by a point defect scatters into the 3d phonon density of states
(pDOS). b) A phonon scattered by a linear defect (scattering potential, V (x, y))
conserves phonon momentum in the z -direction and thus scatters into the 2d pDOS,
contributing ω to the phonon scattering rate. c) A phonon scattered by planar defect
(V (x)) conserves phonon momentum within the defect plane (yz -plane) and scatters
into the 1d pDOS which is ω-independent. vg and vp are the phonon group and phase
velocities. The bottom panel shows this dimensionality argument for the ω power
law applied to the scattering rate due to mass fluctuation scattering. . . . . . . . . . 33
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2.5 a) A schematic illustration of two common models used to describe heat conduction
in materials with interfaces. The vertical can be interpreted as temperature of a
specific conduction channel, which can be either a specific phonon mode ks or fre-
quency ω depending on the level of detail of the model. The blue line depicts the
Landauer based model where a thermal boundary resistance arising from the con-
duction channel having a interfacial transmission probability t(ks) > 1 (or t(ω) > 0),
induces an instantaneous drop in temperature. The red line depicts a model based
on phonon scattering theory and Matthiessen’s rule, where each scattering mecha-
nism contributes a scattering rate (τ(ks)−1 or τ(ω)−1) and thermal resistance to the
conduction channel. b) A comparison between the transmissivity calculated using
classical acoustic mismatch (AMM) theory and quantum perturbation theory (Eq.
2.50 and 2.59). The two differ no more than 5% across the entire range. . . . . . . . 40

3.1 The low temperature lattice thermal conductivity (κL) of polycrystalline samples
compared to that of single crystals. In polycrystals where the phonon scattering
is dominated by grain boundary interactions, κph scales as T 2. In single crystals
where scattering is dominated by phonon sample surface interactions, T 3 behavior is
observed. The κph and T values are normalized for comparison. Un-normalized data
are shown in Figure 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Kinematics and conservation laws leading to diffraction conditions and dimensionality
crossover. a) An illustration of the array of linear defects which scatters a phonon
k into a state k′. b) Scattering from linear defects requires the conservation of
momentum in the kz direction, kz = k′z. This results in a scattering circle that
lies parallel to the xy-plane. c) Because of further conservation laws arising from
the periodic nature of the scattering potential (given in Eq. 3.3 in the text), only
intersections of this circle with the dashed lines are valid. For small |k|, only the
m = 0 line will give valid solutions (and a phonon density of states (pDOS), g1d).
When |k| is large, the entire circle is essentially accessible (pDOS g2d). . . . . . . . . 46

3.3 A periodic array of edge dislocations describing the structure of a symmetric tilt grain
boundary. a) Schematic illustration of an array of edge dislocations (⊥) periodically
spaced by D with Burger’s vector bx̂ forming a grain boundary of angle θGB. Careful
examination of the atoms highlighted in red reveals that they are displaced. b) Grain
boundary strain maps of hydrostatic strain ε∆, pure shear strain εS, and rotation
εR, calculated via Eq. 3.11 with parameters given in Table 3.1. Scale bar shows the
percent strain (10−2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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3.4 Phonon diffraction peaks arising from the periodic nature of a grain boundary strain
field. The scattering rate is calculated from Eq. 3.13 for a phonon at normal incidence
(k‖x̂) at different magnitudes of the phonon wavevector, k = |k|. Scattering at low k

is non-zero as shown in the inset, and diffraction peaks are observed as singularities
at 2πm/D, where m is an integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Dimensionality crossover effects observed in phonon-GB strain field scattering in
diffuse heat conduction. a) The vertical dashed line denotes the crossover frequency,
below which the phonon scatters off the GB as a 2d defect (ω independent, τ ∝ ω0),
and above which scatters off the grain boundary as an array of 1d defects (τ ∝
ω−1). D is the linear defect spacing (Figure 3.3a), and θGB can be interpreted as
the magnitude of angular deviation from a special boundary [57]. b) The spectral
scattering rate is shown where the dashed line compares the approximate formula
given in the main text (Eq. 3.14) to the exact formula (solid line). c) Phonon-GB
strain field scattering cast in terms of a spectral transmissivity function (Eq. 3.17)
shows a frequency independent transmissivity at low-ω and a decrease above the
crossover frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 General features of the influence of phonon-grain boundary (GB) strain-field scatter-
ing on low temperature lattice thermal conductivity. The figure is based on parame-
ters appropriate for Si with a Debye dispersion as described in the text. Curves are
shown for several values of GB dislocation spacing (D), corresponding to GB angles
(θGB shown in the legend. When D is small, phonons see the grain boundary as a
planar defect (n̄ = 1) resulting in ω-independent scattering and κph ∝ T 3. When D
is large the phonons see the grain boundary as an array of independently scattering
line defects (n̄ = 2) which gives τ−1

gbs ∝ ω, leading to κph ∝ T 2 behavior at low-T . The
full and dashed lines are calculated using the full summation (Eq. 3.13 and G.4.13)
and the semi-empirical formula (Eq. 3.14), respectively. . . . . . . . . . . . . . . . . 55

3.7 Thermal transport modeling of polycrystalline (pc) a) Si, b) AlN, and c) Al2O3.
Data for these materials is taken from Refs. [43, 44, 45]. The intrinsic scattering
parameters are fit to single crystals (sc) and have the values shown in Table 3.1. The
solid lines follow from the theoretical modeling as described in the text. The data for
polycrystals shows a clear T 2 power law in accord with our GB strain field scattering
theory and defect dimensionality arguments. The dashed lines show a comparison of
the data with the gray model. The error in the literature data is smaller than size of
the data points on this logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . 57
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3.8 Transition electron microscopy images of Si twist GBs. a) Image of the GB with
the electron beam perpendicular to the GB plane normal vector < 001 >. The
GB structure seems to be amorphous when observed from this angle. b) Image of
GBs with the electron beam parallel to the GB plane normal vector. When viewed
from this angle the GB dislocation structure can be observed, confirming that this
procedure produces clean GBs in their low energy configuration. Notice that the GB
strain field thickness (3nm) shown in panel a is approximately equal to GB dislocation
spacing in panel b. c) A lower magnification image of panel b. . . . . . . . . . . . . 60

3.9 Experimental data of the GB energy (γGB) and thermal boundary resistance (Rκ)
of Si twist GBs. Open circles (left axis) are data from Otsuki [91]. Blue squares
(right axis) are Rκ data from this study for samples after annealing. The lines are
associated with the left axis and show the extended Read-Shockley model for GB
energies, where the core energy (γcore) and the strain energy (γstrain) sum to give γGB. 61

4.1 (a) Room temperature lattice parameters of SnTe as a function of AgSbTe2 content.
The linear change in lattice parameter through the entire composition range suggests
a full solid solution. (b) Backscattered electron image, (c) corresponding elemental
maps obtained from energy dispersive X-ray spectroscopy. (d) Transmission electron
microscopy image as well as selective area diffraction pattern (lower left inset image
in (d)) for the sample AgSn5SbTe7. There is no evident phase separation at either
the micro- or nano scale, which suggests a solid solution behavior between SnTe and
AgSbTe2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 a) Schematic diagram summarizing the results of the DFT defect energy study. Ag
and Sb prefer to reside as nearest neighbors on the metal sublattice and promote
Sn-vacancy formation. Each Sn-vacancy contributes two holes to the valance band.
b) Experimental measurements of the average speed of sound. The measured Hall
carrier concentration for the end members are labeled. Ag and Sb promote cation
vacancy formation which increases the carrier concentration and decreases the average
speed of sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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4.3 (a) Lattice thermal conductivity modeling. Data from a SnTe single crystal from
Damon [98] was modeled along with the polycrystalline SnTe sample and m =5
sample, AgSn5SbTe7 of this study. The gray shaded region shows the reduction in
κlat from SnTe to AgSn5SbTe7 solely due to lattice softening because of decreased
sound velocity, which is measured using ultrasound. The further reduction from gray
to blue (blue shaded region) is due to increased [VSn] and phonon-vacancy scattering.
(b) ZT values as a function of temperature for AgSnmSbTe2+m system. (ZT here is
the material figure of merit.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Milestone improvements in the figure of merit (zT ) of Na-doped PbTe due to re-
ductions in lattice thermal conductivity (κL) (a) The improved zT was previously
attributed solely to phonon scattering from micro/nanostructural defects. Data for
(Na,Sr)-PbTe (Pb0.98Na0.02Te-10%SrTe) are from [101], (Na,Eu)-PbTe (Na0.025Eu0.03Pb0.945Te)
from [102], and Na-PbTe from [103]. (b) A reduction of κL upon the introduction
of micro/nanostructural defects. The lines show the κL = Av3

sT
−1 model describing

phonon thermal conductivity in the high-T limit where the only scattering mecha-
nism is phonon-phonon scattering. A is normalized to the Na-PbTe sample and fixed.
The shaded region shows the reduction in κL expected from lattice softening alone,
without assuming an increase in phonon-defect scattering centers. Phonon scattering
mechanisms could account for the remaining reduction in κL, depicted by the cross-
hatched region. The speed of sound (vs) reduction, measured in this study, is given
in the legend. The circles are data for a Na-doped (0.75% Na) sample synthesized
and measured in this study. The square data points are a low dislocation density
sample from Ref. [104] (Na0.015Eu0.03Pb0.955Te). . . . . . . . . . . . . . . . . . . . . 71

4.5 Lattice thermal conductivity of PbTe samples with different amounts of internal
strain and average speeds of sound (vs). (a) κL vs. T of three characteristic samples.
The lines are applications of the κL = Av3

sT
−1 model where, since the coefficient

A = 1.09× 10−7Ws3m−4 is normalized to the unstrained sample (squares) and held
constant, there are no adjustable parameters and only difference in the model be-
tween samples is the measured vs. (b) A different representation of Eq. 4.4, showing
the data in panel (a) in comparison to a reproducibility study containing three in-
dependently synthesized samples (Figure S4 of [100]). The dashed lines show a 5%
error in κL. This data shows that the reduction in lattice thermal conductivity in
stoichiometric PbTe is fully accounted for by lattice softening. (c) The measured
grain size (filled data points) and density (empty data points) of each sample versus
its room temperature κL showing that all samples have a density between 97 and 99%

of the theoretical density, are large grained, and that there is no systematic trend of
κL with grain size or density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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4.6 Experimentally measured heat capacity plotted as Cp/T 3 vs T in order to illustrate
the horizontal Debye level, β, in the T −→ 0 K limit. Corresponding Debye model
fits of β, from which Debye temperature θD can be calculated, are shown for each
data set. Inside parenthesis, θD and vs are shown as a percentage of the nominally
unstrained sample (green). The reduction in θD is in excellent agreement with the
reduction measured by pulse-echo ultrasound. . . . . . . . . . . . . . . . . . . . . . 75

4.7 Speed of sound decreases linearly with increasing internal-strain in PbTe based mate-
rials. a) Williamson-Hall strain analysis of stoichiometric PbTe, as well as Na-doped,
high zT, compositions (colors are consistent with Figure 4.4 and 4.5). β is the in-
tegral breadth (peak area/height) of a diffraction peak at θ. The slope of the plots
(CεXRD) are proportional to the average internal-strain in the material (details in
Section 4.2.4). b) Example peak fits of a low and high internal-strain samples (cir-
cled in panel (c)). Diffraction peaks in samples with large amounts of internal-strain
show peak shape asymmetry where the peak has a larger broadening on the low 2θ

(larger d-spacing) side of the peak maximum. c) The speed of sound (vs) measured
by pulse-echo ultrasound versus the internal-strain (CεXRD) as measured in panel
(a). The increase in internal-strain is correlated with a linear decrease in the speed of
sound, a reduction in the lattice thermal conductivity, and improved thermoelectric
efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 A schematic transport model demonstrating the characteristics features of defect
scattering and lattice softening mechanisms in the reduction of lattice thermal con-
ductivity (κL). a) The κL of a pristine sample (κo) compared to the κL of de-
fective samples where the reduction in κL is induced by phonon-defect scattering
and lattice softening. In the pristine sample (κo), and the case of lattice softening
(dark red), τ−1 = τ−1

pp ∝ T . For the case of phonon-defect scattering (dashed),
τ−1 = τ−1

pp + τ−1
defect ∝ T + constant. b) The ratio of κL for the defective sample over

that for the pristine sample. A positive slope of κ/κo indicates significant phonon
scattering effects, and no slope indicates softening effects. . . . . . . . . . . . . . . . 79
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4.9 The temperature dependent reduction of lattice thermal conductivity (κL) in Si and
PbTe. a) A Callaway-type thermal transport model used to estimate the effects of
lattice softening and phonon-grain boundary scattering in reducing κL from single
cyrstal (sc, [73]) to nanocrystalline (nc, [129]) Si, with average grain size of 42 nm.
The red shaded region shows the reduction in lattice thermal conductivity expected
from measured lattice softening alone. Phonon-grain boundary scattering was in-
cluded using the expression derived by Hanus et al. [39], τgbs, where the only pa-
rameter changed from Ref. [39] to this study is the grain size. Therefore, the only
parameters in the model changed from Si-sc to Si-nc are the experimentally measured
vs and grain size. The dashed line shows the predicted κL if lattice softening is not
included. b) The normalized κL of Si-nc showing a positive slope with T around
room temperature indicates phonon scattering effects are important. c) The normal-
ized κL of high-zT Na-doped PbTe samples showing a flat temperature dependence
indicating that lattice softening is important. . . . . . . . . . . . . . . . . . . . . . . 80

4.10 a) Internal strain of precursor powder versus ball milling time. High energy ball
milling can be used to systematically control internal strain energy, however there is
a saturation of the internal strain which depends on the details of the ball milling
procedure (60 minutes in this case). The amount of internal strain is only reproducible
if: (1) the initial particle size distribution (2) amount of material being ball milled
(3) type of milling media and (4) the ball milling time are consistent, as can be
seen by comparing the two trials. The inset shows that the internal strain in the
powder is roughly proportional to the internal strain of the resulting pressed pellet. b)
Powder internal strain and pellet speed of sound when all of the previously mentioned
experimental parameters are not controlled. . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 a) Characteristic example of X-ray diffraction data and Reitveld refinement results.
Circles are observed data of the PbTe sample, the red line is the calculated intensity
obtained via refinement with GSAS II, and the blue line is the difference of the
two. The inset shows a detailed view of a high angle peak, where the diamonds are
data from the LaB6 660c NIST standard and the purple line the calculated fit. This
shows that the instrument line width resolution is sufficient for strain analysis, and
verifies the quality of the refinement specifically in the context of peak broadening.
b) Strain contour plot resulting from the generalized strain model, which accounts for
the anisotropic peak broadening. c) Single peak fits showing how the h00 type peaks
are sharp compared to the rest of the reflections. d) Illustration of a dislocation with
a Burger’s vector of a2 〈110〉. The extra half plane is shaded in grey, and the dashed
lines show nodes in the σyy and σxy components of the stress tensor. . . . . . . . . . 85
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4.12 Scanning electron microscopy images of fracture surfaces, with the average grain size
determined via the linear intercept method indicated. Data points are consistent with
Figures 4.5 and S4 of [100], and the scale is the same for all six images. The thermal
conductivity measured does not systematically trend with the materials grain size. . 88

5.1 Brillouin zone folding promotes phonon conduction through the diffuson channel.
Schematic illustration of the folding of one phonon branch when the number of atoms
per unit cell is increased from one to two and four. A commonly cited effect of zone
folding is that it reduces the average phonon group velocity, vg = dω/dk, of the
phonon-gas channel. However, when the diffuson conduction channel is considered,
in addition to the phonon-gas, one recognizes that zone folding increases the number
of branches s and decreases their energy separation. Upon the broadening of these
phonon branches this will promote normal mode mixing, and in turn increase thermal
conduction through the diffuson channel. . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 a) The body centered Yb14MSb11 tetrahedral crystal structure containing 208 atoms
(I41/acd, no. 142). There are 104 in the primitive unit cell. Yb is shown in blue, Sb
in green andM = Mn, Mg are contained in the red Sb4 tetrahedra. b) The reciprocal
lattice and first Brillouin zone. The harmonic vibrational band structure is shown
along the Γ−N and Γ−X high symmetry lines. . . . . . . . . . . . . . . . . . . . . 93

5.3 The dynamic structure factor (scattering function) shown as a function the magni-
tude of the scattering wave-vector (|Q|) and energy (E), S(|Q|, E). Polycrystalline
samples of Yb14MgSb11 with 104 atoms per primitive unit cell, and Al with one atom
per primitive unit cell are shown for comparison. In polycyrstalline Al, clear phonon
branches are observed that originate from the diffraction peaks at E = 0 meV. These
isolated phonon branches are not easily observed in Yb14MgSb11, and through this
qualitative comparison one may suspect that the character of atomic vibrations in
Yb14MgSb11 is not consistent with the phonon-gas picture. The isolated and distin-
guished branches in Al indicate that the phonon-gas picture holds. . . . . . . . . . . 95

5.4 The phonon band structure, and vibrational density of states (DOS) computed from
DFT-based lattice dynamics for a) Yb14MgSb11 and b) Yb14MnSb11. For the DOS,
an 8x8x8 uniform k-mesh and the tetrahedron method was used to approximate the
integration over the Billouin zone. Additionally the DOS was convoluted with a 1.5
meV full width half max Gaussian function which is consistent with the instrument
resolution seen in the inelastic neutron experiments. . . . . . . . . . . . . . . . . . . 97
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5.5 Neutron weighted density of states in a) Yb14MgSb11 and b) Yb14MnSb11 measured
via inelastic neutron scattering at 300K on the ARCS spectrometer at the SNS.
The experimental data and computational predictions have been normalized and the
energy axis has been shifted for comparison. The computation predictions shown
here are based on the results shown in Figure 5.4. As can be seen the simulations
agree well experimental results, particularly for phonon modes below 20 meV. . . . . 98

6.1 Structural representation of Yb-filled CoSb3 (shown with the origin shifted by -
1/4[111]) with Co in blue, Sb atoms in gold, and Yb atoms (filler) in light blue.
Sb forms Sb4 rings that coordinate to Co. (b) Structural motif of CoSb3. Two octa-
hedra share either one Sb or an edge of an Sb-Sb ring. Star labeled atoms represent
the motif (b) in context within the structure (a). . . . . . . . . . . . . . . . . . . . . 101

6.2 High angle annular dark-field, scanning transmission electron microscopy (HAADF-
STEM) image of the p-type Ce0.85Fe3CoSb12/0.56 vol% rGO sample. Right Insets:
local energy spectrum analysis for Sb, Fe, Ce, Co and C respectively. . . . . . . . . 103

6.3 Atom probe tomography (APT) analysis of the most heavily doped sample Ce0.2Co4Sb12.
(a) 3D reconstruction of microtip containing a grain boundary. Ce atoms are dis-
played in red; Sb and Co atoms omitted for clarity. (b) Concentration profile across
the grain boundary and in the grain. The black dashed lines show values measured
by electron probe micro analysis (EPMA), and the error bars represent the stan-
dard error,

√
c(1− c)/n, where c is the concentration and n is the number of atoms

detected in each data point bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Temperature dependence of the (a) electrical conductivity, (b) carrier mobility, (c)
Seebeck coefficients, (d) power factors of p-type Ce0.85Fe3CoSb12/y vol% rGO sam-
ples (y = 0, 0.56, 1.4, 2.8) and n-type Yb0.27Co4Sb12/y vol% samples (y = 0, 0.72)
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6.5 Determination of interfacial thermal resistance (Rκ) from grain boundaries in poly-
crystalline skutterudite samples (without rGO). The uncertainty in the grain-size is
20%. (a) and (c) show room temperature lattice thermal conductivity with varying
grain size. Rκ is in units of 10−7 m2K W−1; (b) and (d) show κlat with temperature
for n and p-type skutterudite samples. Lines in all figures are calculated from Eq. 6.1. 106
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6.6 a) Diagram of the thermal circuit representing the thermal resistance of grain bound-
aries wrapped in graphene with the resistance elements labeled by their respective
thermal conductivities. b) Lattice thermal conductivity (κlat) at 300 K with varying
amounts of rGO for both n and p-type skutterudite/rGO composite (solid symbols).
Data for n-type material are from Ref. [167]. The solid lines represent the model (Eq.
6.2) when thermal boundary resistance is unchanged Rκ = 3.8×10−7 m2KW−1. The
dashed lines represent the model when the thermal boundary resistance is increased
to 17×10−7 m2KW−1 for n-type and 11×10−7 m2KW−1 for p-type, due to graphene
modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 a) Temperature-dependent zT for Ce0.85Fe3CoSb12/y vol% rGO (y = 0, 0.56, 1.4,
2.8) samples from 300-800 K and Yb0.27Co4Sb12/y vol% (y = 0, 0.72) samples from
300-850 K from Ref. [167]. b) Inset: Thermoelectric module with dimension of 20
mm x 20 mm x 16 mm using Ce0.85Fe3CoSb12/1.4 vol% rGO and Yb0.27Co4Sb12/0.72

0.72 vol% rGO composite as p and n-type legs, respectively. Maximum conversion
efficiency and power output as a function of the hot side temperature Th for the
skutterudite/rGO based modules (M-SKD/rGO) and the reference device made of
pure SKD (M-SKD). The dash lines represent the theoretical conversion efficiency of
M-SKD/rGO with a maximum value of 10.5 %, and M-SKD with a maximum value
of 8.0 %, when ignoring electrical and thermal contact resistances. . . . . . . . . . . 108

6.8 Exemplary refinement of (a) CoSb3 and (b) Yb0.3Co4Sb12 at 300 K with the cor-
responding profile residuals. The black circles are the experimental data, the red
line is the calculated histogram, and the line below is the difference profile between
the observed and calculated values. The insets show a zoomed in view on high an-
gle reflections and the high quality fit of the refinement at the corresponding low
d-spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.9 Temperature dependent lattice parameter of CoSb3 obtained from the Rietveld re-
finements, showing the positive thermal expansion of the unit cell. Introduction of
the filler atom further increases the unit cell. For comparison, data for increasing
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6.11 Temperature dependence of the Co-Sb (c) and Sb-Sb bond lengths (a) and (b). Lines
correspond to linear fits used to calculate the local thermal expansion coefficient
αL

300K. Literature values from Ohno et al. [193] are shown by triangles, showing the
good fit of the data with literature values at room temperature and at 10 K. While
all bonds expand with increasing temperature in the undoped CoSb3, the longer
bond exhibits a larger slope and faster thermal expansion. Substitution with the
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6.12 In all panels, blue corresponds to contributions from Co and orange to contributions
from Sb. a) Molecular orbital diagrams of the CoSb6 octahedron and the Sb4 ring.
Atomic orbitals are not shown for the Sb4 ring. The octahedral crystal field splitting
is visible and gives, in combination with the bonding, anti-bonding separation of
the Sb-Sb bonds the band gap. b) Crystal Orbital Hamilton Population (COHP)
calculated from the DFT data, showing the bonding nature of the Sb-Sb bonds in
the valence bands and Sb-Sb anti-bonding states in the conduction band. The Co-Sb
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